提交 3569466d 编写于 作者: Y yi.wu

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into dockerreadme

.gitignore
\ No newline at end of file
*.DS_Store
build/
*.user
.vscode
.idea
.project
.cproject
.pydevproject
Makefile
.test_env/
third_party/
*~
bazel-*
!build/*.deb
......@@ -3,20 +3,17 @@
FROM nvidia/cuda:7.5-cudnn5-devel-ubuntu14.04
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
ARG DEBIAN_FRONTEND=noninteractive
ARG UBUNTU_MIRROR
RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com/ubuntu#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi'
# ENV variables
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_GPU
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=${WITH_AVX:-OFF}
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-OFF}
......@@ -31,7 +28,7 @@ RUN apt-get update && \
apt-get install -y wget unzip tar xz-utils bzip2 gzip coreutils && \
apt-get install -y curl sed grep graphviz libjpeg-dev zlib1g-dev && \
apt-get install -y python-numpy python-matplotlib gcc g++ gfortran && \
apt-get install -y automake locales clang-format-3.8 && \
apt-get install -y automake locales clang-format-3.8 swig && \
apt-get clean -y
# git credential to skip password typing
......@@ -51,8 +48,6 @@ RUN curl -sSL https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz | tar -xz && \
cd cmake-3.4.1 && ./bootstrap && make -j `nproc` && make install && \
cd .. && rm -rf cmake-3.4.1
RUN apt-get install -y swig
VOLUME ["/usr/share/nginx/html/data", "/usr/share/nginx/html/paddle"]
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
......
......@@ -2,8 +2,8 @@
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/cn/index.html)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/develop/doc/)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/doc_cn/)
[![Coverage Status](https://coveralls.io/repos/github/PaddlePaddle/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/PaddlePaddle/Paddle?branch=develop)
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
......@@ -59,36 +59,36 @@ Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddl
the capability of PaddlePaddle to make a huge impact for your product.
## Installation
Check out the [Install Guide](http://paddlepaddle.org/doc/build/) to install from
pre-built packages (**docker image**, **deb package**) or
directly build on **Linux** and **Mac OS X** from the source code.
It is recommended to check out the
[Docker installation guide](http://www.paddlepaddle.org/develop/doc/getstarted/build_and_install/docker_install_en.html)
before looking into the
[build from source guide](http://www.paddlepaddle.org/develop/doc/getstarted/build_and_install/build_from_source_en.html)
## Documentation
Both [English Docs](http://paddlepaddle.org/doc/) and [Chinese Docs](http://paddlepaddle.org/doc_cn/) are provided for our users and developers.
- [Quick Start](http://paddlepaddle.org/doc/demo/quick_start/index_en) <br>
You can follow the quick start tutorial to learn how use PaddlePaddle
step-by-step.
We provide [English](http://www.paddlepaddle.org/develop/doc/) and
[Chinese](http://www.paddlepaddle.org/doc_cn/) documentation.
- [Deep Learning 101](http://book.paddlepaddle.org/index.en.html)
You might want to start from the this online interactive book that can run in Jupyter Notebook.
- [Distributed Training](http://www.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html)
You can run distributed training jobs on MPI clusters.
- [Distributed Training on Kubernetes](http://www.paddlepaddle.org/develop/doc/howto/usage/k8s/k8s_en.html)
- [Example and Demo](http://paddlepaddle.org/doc/demo/) <br>
We provide five demos, including: image classification, sentiment analysis,
sequence to sequence model, recommendation, semantic role labeling.
You can also run distributed training jobs on Kubernetes clusters.
- [Distributed Training](http://paddlepaddle.org/doc/cluster) <br>
This system supports training deep learning models on multiple machines
with data parallelism.
- [Python API](http://www.paddlepaddle.org/develop/doc/api/index_en.html)
- [Python API](http://paddlepaddle.org/doc/ui/) <br>
PaddlePaddle supports using either Python interface or C++ to build your
system. We also use SWIG to wrap C++ source code to create a user friendly
interface for Python. You can also use SWIG to create interface for your
favorite programming language.
Our new API enables much shorter programs.
- [How to Contribute](http://paddlepaddle.org/doc/build/contribute_to_paddle.html) <br>
We sincerely appreciate your interest and contributions. If you would like to
contribute, please read the contribution guide.
- [How to Contribute](http://www.paddlepaddle.org/develop/doc/howto/dev/contribute_to_paddle_en.html)
- [Source Code Documents](http://paddlepaddle.org/doc/source/) <br>
We appreciate your contributions!
## Ask Questions
......
......@@ -72,7 +72,7 @@ function( Sphinx_add_target target_name builder conf cache source destination )
${source}
${destination}
COMMENT "Generating sphinx documentation: ${builder}"
COMMAND cd ${destination} && ln -s ./index_*.html index.html
COMMAND cd ${destination} && ln -sf ./index_*.html index.html
)
set_property(
......
......@@ -164,15 +164,6 @@ public:
argu.value = value;
data_.push_back(argu);
}
/**
* @brief Append user defined data
* @param[in] ptr user defined data
*/
void appendUserDefinedPtr(UserDefinedVectorPtr ptr) {
Argument argu;
argu.udp = ptr;
data_.push_back(argu);
}
/*
* @brief Append argument
......
......@@ -192,6 +192,59 @@ void SumOfSquaresCostLayer::backwardImp(Matrix& output,
outputG.sumOfSquaresBp(output, *label.value);
}
//
// class SmoothL1CostLayer
//
REGISTER_LAYER(smooth_l1, SmoothL1CostLayer);
bool SmoothL1CostLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
return CostLayer::init(layerMap, parameterMap);
}
void SmoothL1CostLayer::forwardImp(Matrix& output,
Argument& label,
Matrix& target) {
MatrixPtr targetCpu, outputCpu, labelCpu;
if (useGpu_) {
targetCpu =
Matrix::create(target.getHeight(), target.getWidth(), false, false);
outputCpu =
Matrix::create(output.getHeight(), output.getWidth(), false, false);
labelCpu = Matrix::create(
label.value->getHeight(), label.value->getWidth(), false, false);
targetCpu->copyFrom(target);
outputCpu->copyFrom(output);
labelCpu->copyFrom(*label.value);
targetCpu->smoothL1(*outputCpu, *(labelCpu));
target.copyFrom(*targetCpu);
} else {
target.smoothL1(output, *label.value);
}
}
void SmoothL1CostLayer::backwardImp(Matrix& output,
Argument& label,
Matrix& outputG) {
MatrixPtr outputGCpu, outputCpu, labelCpu;
if (useGpu_) {
outputGCpu =
Matrix::create(outputG.getHeight(), outputG.getWidth(), false, false);
outputCpu =
Matrix::create(output.getHeight(), output.getWidth(), false, false);
labelCpu = Matrix::create(
label.value->getHeight(), label.value->getWidth(), false, false);
outputGCpu->copyFrom(outputG);
outputCpu->copyFrom(output);
labelCpu->copyFrom(*label.value);
outputGCpu->smoothL1Bp(*outputCpu, *labelCpu);
outputG.copyFrom(*outputGCpu);
} else {
outputG.smoothL1Bp(output, *label.value);
}
}
//
// class RankingCost
//
......
......@@ -159,6 +159,29 @@ public:
Matrix& outputGrad) override;
};
/**
* This cost layer compute smooth L1 loss for real-valued regression
* tasks.
* \f[
* L =
* (output - label)^2 * 0.5 / -1 < (output - label) < 1 /
* (output - label) - 0.5 / otherwise /
* \f]
*/
class SmoothL1CostLayer : public CostLayer {
public:
explicit SmoothL1CostLayer(const LayerConfig& config) : CostLayer(config) {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forwardImp(Matrix& output, Argument& label, Matrix& cost) override;
void backwardImp(Matrix& outputValue,
Argument& label,
Matrix& outputGrad) override;
};
/**
* A cost layer for learning to rank (LTR) task. This layer contains at leat
* three inputs.
......
......@@ -56,17 +56,16 @@ void SequencePoolLayer::forward(PassType passType) {
CHECK_EQ(newBatchSize_, starts->getSize() - 1);
resetOutput(newBatchSize_, dim);
if (type_) {
CHECK(input.subSequenceStartPositions)
<< "when trans_type = seq, input must hasSubseq";
}
/* If type_ = kNonSeq, both seq has or not has sub-seq degrade to a non-seq,
* thus, in this case, output_ has no sequenceStartPositions.
* If type_ = kSeq, seq has sub-seq degrades to a seq, thus, only in this
* case, we should compute the new sequenceStartPositions.
*/
if (type_) {
output_.degradeSequence(input, useGpu_);
CHECK(input.subSequenceStartPositions)
<< "when trans_type = seq, input must hasSubseq";
output_.degradeSequence(input);
}
}
......
......@@ -1602,6 +1602,20 @@ TEST(Layer, PadLayer) {
}
}
TEST(Layer, smooth_l1) {
TestConfig config;
config.layerConfig.set_type("smooth_l1");
config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 1, 0});
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
for (auto useGpu : {false, true}) {
testLayerGrad(config, "smooth_l1", 100, false, useGpu, false, 2.0);
}
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
initMain(argc, argv);
......
......@@ -3590,6 +3590,55 @@ void CpuMatrix::sumOfSquaresBp(Matrix& output, Matrix& label) {
}
}
void CpuMatrix::smoothL1(Matrix& output, Matrix& label) {
CHECK(output.useGpu_ == false && label.useGpu_ == false)
<< "Matrix type are not equal";
size_t numSamples = getHeight();
size_t dim = output.getWidth();
CHECK_EQ(label.getHeight(), numSamples);
CHECK_EQ(output.getHeight(), numSamples);
CHECK_EQ(label.getWidth(), dim);
CHECK_EQ(getWidth(), (size_t)1);
real* out = output.getData();
real* cost = getData();
real* lbl = label.getData();
for (size_t i = 0; i < numSamples; ++i, out += dim, cost += dim, lbl += dim) {
for (size_t j = 0; j < dim; ++j) {
cost[j] = std::fabs(out[j] - lbl[j]);
if (cost[j] < 1.0)
cost[j] = 0.5 * cost[j] * cost[j];
else
cost[j] = cost[j] - 0.5;
}
}
}
void CpuMatrix::smoothL1Bp(Matrix& output, Matrix& label) {
CHECK(output.useGpu_ == false && label.useGpu_ == false)
<< "Matrix type are not equal";
size_t numSamples = getHeight();
size_t dim = output.getWidth();
CHECK_EQ(label.getHeight(), numSamples);
CHECK_EQ(output.getHeight(), numSamples);
CHECK_EQ(label.getWidth(), dim);
CHECK_EQ(getWidth(), (size_t)1);
real* out = output.getData();
real* cost = getData();
real* lbl = label.getData();
// f'(x) = x if |x| < 1
// = sign(x) otherwise
for (size_t i = 0; i < numSamples; ++i, out += dim, cost += dim, lbl += dim) {
for (size_t j = 0; j < dim; ++j) {
cost[j] = out[j] - lbl[j];
if (std::fabs(cost[j]) >= 1) cost[j] = (0 < cost[j]) - (cost[j] < 0);
}
}
}
void CpuMatrix::tanh(Matrix& output) {
CHECK(isContiguous());
CHECK(output.isContiguous());
......
......@@ -783,6 +783,14 @@ public:
LOG(FATAL) << "Not implemented";
}
virtual void smoothL1(Matrix& output, Matrix& label) {
LOG(FATAL) << "Not implemented";
}
virtual void smoothL1Bp(Matrix& outputV, Matrix& label) {
LOG(FATAL) << "Not implemented";
}
virtual void tanh(Matrix& output) { LOG(FATAL) << "Not implemented"; }
virtual void tanhDerivative(Matrix& output) {
......@@ -1720,6 +1728,9 @@ public:
/// gradient of sumOfSquares.
void sumOfSquaresBp(Matrix& outputV, Matrix& label);
void smoothL1(Matrix& output, Matrix& label);
void smoothL1Bp(Matrix& output, Matrix& label);
void tanh(Matrix& output);
void tanhDerivative(Matrix& output);
......
......@@ -123,46 +123,6 @@ static void resizeAndCopy(ICpuGpuVectorPtr& dest,
}
}
static void resizeAndCopy(UserDefinedVectorPtr& dest,
const UserDefinedVectorPtr& src,
bool useGpu,
hl_stream_t stream) {
if (src) {
CHECK(!useGpu) << "not implemented";
size_t height = src->size();
if (!dest) {
dest = std::make_shared<std::vector<void*>>(height);
} else {
dest->resize(height);
}
std::copy_n(src->begin(), height, dest->begin());
} else {
dest.reset();
}
}
static void resizeAndCopy(UserDefinedVectorPtr& dest,
const UserDefinedVectorPtr& src,
int32_t startPos,
int32_t copySize,
bool useGpu,
hl_stream_t stream = HPPL_STREAM_DEFAULT) {
if (src) {
CHECK(!useGpu) << "not implemented";
CHECK_LE((size_t)startPos + copySize, src->size());
size_t height = copySize;
if (!dest) {
dest = std::make_shared<std::vector<void*>>(height);
} else {
dest->resize(height);
}
std::copy_n(src->begin() + startPos, height, dest->begin());
} else {
dest.reset();
}
}
static void resizeAndCopy(SVectorPtr& dest,
const SVectorPtr& src,
bool useGpu,
......@@ -223,7 +183,6 @@ void Argument::resizeAndCopyFrom(const Argument& src,
false /* useGpu */,
stream);
}
resizeAndCopy(udp, src.udp, useGpu, stream);
resizeAndCopy(strs, src.strs, useGpu, stream);
frameWidth = src.frameWidth;
frameHeight = src.frameHeight;
......@@ -255,7 +214,6 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src,
resizeAndCopy(value, src.value, startRow, copySize, useGpu, stream);
resizeAndCopy(grad, src.grad, startRow, copySize, useGpu, stream);
resizeAndCopy(ids, src.ids, startRow, copySize, useGpu, stream);
resizeAndCopy(udp, src.udp, startRow, copySize, useGpu, stream);
resizeAndCopy(strs, src.strs, startRow, copySize, useGpu, stream);
return copySize;
} else {
......@@ -268,7 +226,6 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src,
resizeAndCopy(value, src.value, startRow, copyFeatureSize, useGpu, stream);
resizeAndCopy(grad, src.grad, startRow, copyFeatureSize, useGpu, stream);
resizeAndCopy(ids, src.ids, startRow, copyFeatureSize, useGpu, stream);
resizeAndCopy(udp, src.udp, startRow, copySize, useGpu, stream);
resizeAndCopy(sequenceStartPositions,
src.sequenceStartPositions,
startSeq,
......@@ -583,7 +540,7 @@ void Argument::checkSubset() const {
}
}
void Argument::degradeSequence(const Argument& input, bool useGpu) {
void Argument::degradeSequence(const Argument& input) {
CHECK_EQ(input.hasSubseq(), 1UL);
size_t numSequences = input.getNumSequences();
size_t numSubSequences = input.getNumSubSequences();
......
......@@ -24,8 +24,6 @@ limitations under the License. */
namespace paddle {
// vector of user defined pointers
typedef std::shared_ptr<std::vector<void*>> UserDefinedVectorPtr;
typedef std::shared_ptr<std::vector<std::string>> SVectorPtr;
struct Argument {
......@@ -40,7 +38,6 @@ struct Argument {
sequenceStartPositions(nullptr),
subSequenceStartPositions(nullptr),
cpuSequenceDims(nullptr),
udp(nullptr),
deviceId(-1),
allCount(0),
valueCount(0),
......@@ -63,7 +60,6 @@ struct Argument {
sequenceStartPositions = argument.sequenceStartPositions;
subSequenceStartPositions = argument.subSequenceStartPositions;
cpuSequenceDims = argument.cpuSequenceDims;
udp = argument.udp;
deviceId = argument.deviceId;
allCount = argument.allCount;
frameHeight = argument.frameHeight;
......@@ -96,8 +92,6 @@ struct Argument {
// dimension of sequence, stored only in CPU
IVectorPtr cpuSequenceDims;
UserDefinedVectorPtr udp; // user defined pointer
int deviceId; // the GPU device id which the argument in
int allCount; // the number of output layers using this argument
mutable int valueCount; // waiting this member when layer do forward
......@@ -137,7 +131,6 @@ struct Argument {
if (ids) return ids->getSize();
if (grad) return grad->getHeight();
if (in) return in->getHeight();
if (udp) return udp->size();
if (strs) return strs->size();
return 0;
}
......@@ -296,7 +289,7 @@ struct Argument {
/*
sequence has sub-sequence degrades to a sequence.
*/
void degradeSequence(const Argument& input, bool useGpu);
void degradeSequence(const Argument& input);
/**
* @brief getValueString will return the argument's output in string. There
......
......@@ -109,7 +109,7 @@ This command mounts the source directory on the host into `/paddle` in the conta
Users can specify the following Docker build arguments with either "ON" or "OFF" value:
- `WITH_GPU`: ***Required***. Generates NVIDIA CUDA GPU code and relies on CUDA libraries.
- `WITH_AVX`: ***Required***. Set to "OFF" prevents from generating AVX instructions. If you don't know what is AVX, you might want to set "ON".
- `TEST`: ***Optional, default ON***. Build unit tests and run them after building.
- `TEST`: ***Optional, default OFF***. Build unit tests and run them after building.
- `BUILD_AND_INSTALL`: ***Optional, default ON***. Run `make` and `make install`.
- `DELETE_BUILD_CACHE`: ***Optional, default ON***. If set to "ON", the building script will delete, download, and re-build third party libraries.
......
#!/bin/bash
function abort(){
echo "An error occurred. Exiting..." 1>&2
exit 1
}
trap 'abort' 0
set -e
mkdir -p /paddle/dist/cpu
mkdir -p /paddle/dist/gpu
mkdir -p /paddle/dist/cpu-noavx
mkdir -p /paddle/dist/gpu-noavx
# Set BASE_IMAGE and DEB_PATH according to env variables
# Set BASE_IMAGE according to env variables
if [ ${WITH_GPU} == "ON" ]; then
BASE_IMAGE="nvidia/cuda:7.5-cudnn5-runtime-ubuntu14.04"
# additional packages to install when building gpu images
GPU_DOCKER_PKG="python-pip python-dev"
if [ ${WITH_AVX} == "ON" ]; then
DEB_PATH="dist/gpu/"
else
DEB_PATH="dist/gpu-noavx/"
fi
else
BASE_IMAGE="python:2.7.13-slim"
if [ ${WITH_AVX} == "ON" ]; then
DEB_PATH="dist/cpu/"
else
DEB_PATH="dist/cpu-noavx/"
fi
fi
# If Dockerfile.* sets BUILD_AND_INSTALL to 'ON', it would have copied
# source tree to /paddle, and this scripts should build it into
# /paddle/build.
if [[ ${BUILD_AND_INSTALL:-ON} == 'ON' ]]; then
if [[ ${WITH_GPU:-OFF} == 'ON' ]]; then
ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so /usr/lib/libcudnn.so
fi
mkdir -p /paddle/build # -p means no error if exists
cd /paddle/build
# clean local cmake and third_party cache
if [ ${DELETE_BUILD_CACHE:-ON} == 'ON' ]; then
rm -rf * && rm -rf ../third_party
fi
cmake .. \
-DWITH_DOC=${WITH_DOC:-OFF} \
-DWITH_GPU=${WITH_GPU:-OFF} \
-DWITH_AVX=${WITH_AVX:-OFF} \
-DWITH_SWIG_PY=ON \
-DCUDNN_ROOT=/usr/ \
-DWITH_STYLE_CHECK=OFF \
-DON_COVERALLS=${TEST:-ON} \
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
make -j `nproc`
if [ ${TEST:-ON} == "ON" ]; then
make coveralls
fi
make install
# generate deb package for current build
# FIXME(typhoonzero): should we remove paddle/scripts/deb ?
# FIXME: CPACK_DEBIAN_PACKAGE_DEPENDS removes all dev dependencies, must
# install them in docker
cpack -D CPACK_GENERATOR='DEB' -D CPACK_DEBIAN_PACKAGE_DEPENDS="" ..
mv /paddle/build/*.deb /paddle/${DEB_PATH}
if [[ ${BUILD_WOBOQ:-OFF} == 'ON' ]]; then
apt-get install -y clang-3.8 llvm-3.8 libclang-3.8-dev
# Install woboq_codebrowser.
git clone https://github.com/woboq/woboq_codebrowser /woboq
cd /woboq
cmake -DLLVM_CONFIG_EXECUTABLE=/usr/bin/llvm-config-3.8 \
-DCMAKE_BUILD_TYPE=Release \
.
make
DOCKERFILE_GPU_ENV=""
if [[ ${WITH_GPU:-OFF} == 'ON' ]]; then
DOCKERFILE_GPU_ENV="ENV LD_LIBRARY_PATH /usr/lib/x86_64-linux-gnu:${LD_LIBRARY_PATH}"
fi
export WOBOQ_OUT=/usr/share/nginx/html/paddle
export BUILD_DIR=/paddle/build
mkdir -p $WOBOQ_OUT
cp -rv /woboq/data $WOBOQ_OUT/../data
/woboq/generator/codebrowser_generator \
mkdir -p /paddle/build
cd /paddle/build
# build script will not fail if *.deb does not exist
rm *.deb || true
cmake .. \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_DOC=${WITH_DOC:-OFF} \
-DWITH_GPU=${WITH_GPU:-OFF} \
-DWITH_AVX=${WITH_AVX:-OFF} \
-DWITH_SWIG_PY=ON \
-DCUDNN_ROOT=/usr/ \
-DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF} \
-DON_COVERALLS=${TEST:-OFF} \
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
make -j `nproc`
if [[ ${TEST:-OFF} == "ON" ]]; then
make coveralls
fi
make install
# generate deb package for current build
# FIXME(typhoonzero): should we remove paddle/scripts/deb ?
# FIXME: CPACK_DEBIAN_PACKAGE_DEPENDS removes all dev dependencies, must
# install them in docker
cpack -D CPACK_GENERATOR='DEB' -D CPACK_DEBIAN_PACKAGE_DEPENDS="" ..
if [[ ${BUILD_WOBOQ:-OFF} == 'ON' ]]; then
apt-get install -y clang-3.8 llvm-3.8 libclang-3.8-dev
# Install woboq_codebrowser.
git clone https://github.com/woboq/woboq_codebrowser /woboq
cd /woboq
cmake -DLLVM_CONFIG_EXECUTABLE=/usr/bin/llvm-config-3.8 \
-DCMAKE_BUILD_TYPE=Release \
.
make
export WOBOQ_OUT=/usr/share/nginx/html/paddle
export BUILD_DIR=/paddle/build
mkdir -p $WOBOQ_OUT
cp -rv /woboq/data $WOBOQ_OUT/../data
/woboq/generator/codebrowser_generator \
-b /paddle/build \
-a \
-o $WOBOQ_OUT \
-p paddle:/paddle
/woboq/indexgenerator/codebrowser_indexgenerator $WOBOQ_OUT
cd /woboq
make clean
fi
pip install /usr/local/opt/paddle/share/wheels/py_paddle*linux*.whl
pip install /usr/local/opt/paddle/share/wheels/paddle*.whl
paddle version
if [[ ${DOCKER_BUILD:-FALSE} == 'TRUE' ]]; then
# reduce docker image size
rm -rf /paddle/build
rm -rf /usr/local/opt/paddle/share/wheels/
fi
/woboq/indexgenerator/codebrowser_indexgenerator $WOBOQ_OUT
cd /woboq
make clean
fi
paddle version
# generate production docker image Dockerfile
if [ ${USE_MIRROR} ]; then
MIRROR_UPDATE="sed 's@http:\/\/archive.ubuntu.com\/ubuntu\/@mirror:\/\/mirrors.ubuntu.com\/mirrors.txt@' -i /etc/apt/sources.list && \\"
......@@ -109,22 +80,9 @@ fi
cat > /paddle/build/Dockerfile <<EOF
FROM ${BASE_IMAGE}
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
# ENV variables
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV WITH_GPU=${WITH_GPU}
ENV WITH_AVX=${WITH_AVX}
ENV WITH_DOC=\${WITH_DOC:-OFF}
ENV WITH_STYLE_CHECK=\${WITH_STYLE_CHECK:-OFF}
ENV HOME /root
ENV LANG en_US.UTF-8
# Use Fix locales to en_US.UTF-8
RUN ${MIRROR_UPDATE}
apt-get update && \
apt-get install -y libgfortran3 libpython2.7 ${GPU_DOCKER_PKG} && \
......@@ -132,13 +90,10 @@ RUN ${MIRROR_UPDATE}
pip install --upgrade pip && \
pip install -U 'protobuf==3.1.0' requests numpy
# Use different deb file when building different type of images
ADD \$PWD/${DEB_PATH}*.deb /usr/local/opt/paddle/deb/
ADD build/*.deb /usr/local/opt/paddle/deb/
# run paddle version to install python packages first
RUN dpkg -i /usr/local/opt/paddle/deb/*.deb && rm -f /usr/local/opt/paddle/deb/*.deb && paddle version
ENV PATH="/usr/local/opt/paddle/bin/:${PATH}"
${DOCKERFILE_GPU_ENV}
# default command shows the paddle version and exit
CMD ["paddle", "version"]
EOF
trap : 0
......@@ -12,6 +12,7 @@ limitations under the License. */
#pragma once
#include "Common.h"
#include "Error.h"
namespace paddle {
......@@ -97,4 +98,37 @@ private:
#define HAS_AVX512 HAS_SIMD(SIMD_AVX512)
// clang-format on
/**
* Invoke checkCPUFeature() before Paddle initialization to
* check target machine whether support compiled instructions.
* If not, simply throw out an error.
*/
inline Error __must_check checkCPUFeature() {
Error err;
#ifndef __AVX__
if (HAS_AVX) {
LOG(WARNING) << "PaddlePaddle wasn't compiled to use avx instructions, "
<< "but these are available on your machine and could "
<< "speed up CPU computations via CMAKE .. -DWITH_AVX=ON";
}
#else
if (!HAS_AVX) {
err = Error(
"PaddlePaddle was compiled to use avx instructions, "
"but these aren't available on your machine, please "
"disable it via CMAKE .. -DWITH_AVX=OFF");
}
#endif // __AVX__
#ifdef __SSE3__
if (!HAS_SSE3) {
err = Error(
"PaddlePaddle was compiled to use sse3 instructions, "
"which is the minimum requirement of PaddlePaddle. "
"But these aren't available on your current machine.");
}
#endif // __SSE3__
return err;
}
} // namespace paddle
......@@ -26,6 +26,7 @@ limitations under the License. */
#include <gflags/gflags.h>
#include "CpuId.h"
#include "CustomStackTrace.h"
#include "Logging.h"
#include "StringUtil.h"
......@@ -185,6 +186,7 @@ void initMain(int argc, char** argv) {
}
version::printVersion();
checkCPUFeature().check();
runInitFunctions();
}
......
......@@ -2222,7 +2222,10 @@ def Link(
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
# will return name of the memory,
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
......@@ -2234,15 +2237,18 @@ def Link(
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
def Memory(
name,
size,
is_sequence=False,
boot_layer=None,
boot_bias=False,
boot_bias_active_type="",
boot_with_const_id=None, ):
agent_name = name + "+delay1"
def Memory(name,
size,
is_sequence=False,
boot_layer=None,
boot_bias=False,
boot_bias_active_type="",
boot_with_const_id=None,
memory_name=None):
if not memory_name:
config_assert(name is not None, "name needs cannot be None")
memory_name = name + "+delay1"
agent_name = memory_name
if is_sequence:
agent_layer = SequenceAgentLayer(agent_name, size)
else:
......@@ -2250,7 +2256,8 @@ def Memory(
config_assert(g_current_submodel.is_recurrent_layer_group,
'Memory should be used in recurrent layer group only')
memory = g_current_submodel.memories.add()
memory.layer_name = MakeLayerNameInSubmodel(name)
if name is not None:
memory.layer_name = MakeLayerNameInSubmodel(name)
memory.link_name = MakeLayerNameInSubmodel(agent_name)
memory.is_sequence = is_sequence
options = sum((boot_layer is not None, bool(boot_bias),
......@@ -2274,6 +2281,17 @@ def Memory(
return agent_name
@config_func
def SetMemoryInput(memory_name, layer_name):
memory_name = MakeLayerNameInSubmodel(memory_name)
layer_name = MakeLayerNameInSubmodel(layer_name)
for mem in g_current_submodel.memories:
if mem.link_name == memory_name:
mem.layer_name = layer_name
return
logger.fatal("Nonexistent memory name: " + memory_name)
# Generator for recurrent layer group, to use it:
# 1. define a id layer as output of layer group
# 2. define a memory of this id layer, and assign a boot id(begin of sequence)
......
......@@ -97,13 +97,13 @@ def reset_hook():
register_parse_config_hook(reset_hook)
def wrap_name_default(name_prefix=None):
def wrap_name_default(name_prefix=None, name_param="name"):
"""
Decorator to set "name" arguments default to "{name_prefix}_{invoke_count}".
.. code:: python
@default_name("some_name")
@wrap_name_default("some_name")
def func(name=None):
print name # name will never be None. If name is not set,
# name will be "some_name_%d"
......@@ -115,7 +115,7 @@ def wrap_name_default(name_prefix=None):
"""
factory = DefaultNameFactory(name_prefix)
_name_factories.append(factory)
return wrap_param_default(["name"], factory)
return wrap_param_default([name_param], factory)
def wrap_param_attr_default(param_names=None, default_factory=None):
......
......@@ -288,6 +288,14 @@ class LayerOutput(object):
"""
assert False, "this method should not be invoked"
def set_input(self, input):
"""
Set the input for a memory layer. Can only be used for memory layer
"""
assert isinstance(input, LayerOutput)
assert self.layer_type == LayerType.MEMORY
SetMemoryInput(self.name, input.name)
ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
......@@ -2759,8 +2767,10 @@ def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
size=a.size)
@wrap_name_default("memory", "memory_name")
def memory(name,
size,
memory_name=None,
is_seq=False,
boot_layer=None,
boot_bias=None,
......@@ -2782,14 +2792,32 @@ def memory(name,
If boot_layer is not null, the memory is just the boot_layer's output.
Set :code:`is_seq` is true boot layer is sequence.
The same name layer in recurrent group will set memory on each time
step.
:param name: memory's name.
.. code-block:: python
mem = memory(size=256, name='state')
state = fc_layer(input=mem, size=256, name='state')
If you do not want to specify the name, you can equivalently use set_input()
to specify the layer needs to be remembered as the following:
.. code-block:: python
mem = memory(size=256)
state = fc_layer(input=mem, size=256)
mem.set_input(mem)
:param name: the name of the layer which this memory remembers.
If name is None, user should call set_input() to specify the
name of the layer which this memory remembers.
:type name: basestring
:param size: size of memory.
:type size: int
:param memory_name: the name of the memory.
It is ignored when name is provided.
:type memory_name: basestring
:param is_seq: is sequence for boot_layer
:type is_seq: bool
:param boot_layer: boot layer of memory.
......@@ -2811,13 +2839,21 @@ def memory(name,
boot_bias = ParamAttr.to_bias(boot_bias)
assert boot_layer is None or isinstance(boot_layer, LayerOutput)
if name is not None:
memory_name = None
agent_name = Memory(name, size, is_seq, boot_layer.name
if boot_layer is not None else None, boot_bias,
boot_bias_active_type.name, boot_with_const_id)
memory_name = Memory(
name,
size,
is_sequence=is_seq,
boot_layer=boot_layer.name if boot_layer is not None else None,
boot_bias=boot_bias,
boot_bias_active_type=boot_bias_active_type.name,
boot_with_const_id=boot_with_const_id,
memory_name=memory_name)
lout = LayerOutput(
name=agent_name,
name=memory_name,
size=size,
layer_type=LayerType.MEMORY,
parents=[boot_layer] if boot_layer is not None else None)
......@@ -3565,7 +3601,7 @@ def __cost_input__(input, label, weight=None):
ipts = [Input(input.name), Input(label.name)]
parents = [input, label]
if weight is not None:
assert weight.layer_type == LayerType.DATA
assert weight.size == 1
ipts.append(Input(weight.name))
parents.append(weight)
return ipts, parents
......@@ -4946,7 +4982,12 @@ def lambda_cost(input,
@wrap_name_default()
@layer_support()
def cross_entropy(input, label, name=None, coeff=1.0, layer_attr=None):
def cross_entropy(input,
label,
name=None,
coeff=1.0,
weight=None,
layer_attr=None):
"""
A loss layer for multi class entropy.
......@@ -4961,22 +5002,27 @@ def cross_entropy(input, label, name=None, coeff=1.0, layer_attr=None):
:type input: LayerOutput.
:param name: The name of this layers. It is not necessary.
:type name: None|basestring.
:param coeff: The coefficient affects the gradient in the backward.
:param coeff: The cost is multiplied with coeff.
The coefficient affects the gradient in the backward.
:type coeff: float.
:param weight: The cost of each sample is multiplied with each weight.
The weight should be a layer with size=1. Note that gradient
will not be calculated for weight.
:type weight: LayerOutout
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput.
"""
ipts, parents = __cost_input__(input, label, weight)
Layer(
name=name,
type=LayerType.CROSS_ENTROPY,
inputs=[input.name, label.name],
inputs=ipts,
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.CROSS_ENTROPY, parents=[input, label], size=1)
return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
@wrap_name_default()
......
......@@ -331,6 +331,54 @@ layers {
}
trans_type: "non-seq"
}
layers {
name: "__recurrent_group_3__"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "seq_input@__recurrent_group_3__"
type: "scatter_agent"
size: 100
active_type: ""
}
layers {
name: "__memory_6__@__recurrent_group_3__"
type: "agent"
size: 200
active_type: ""
}
layers {
name: "__fc_layer_0__@__recurrent_group_3__"
type: "fc"
size: 200
active_type: "tanh"
inputs {
input_layer_name: "seq_input@__recurrent_group_3__"
input_parameter_name: "___fc_layer_0__@__recurrent_group_3__.w0"
}
inputs {
input_layer_name: "__memory_6__@__recurrent_group_3__"
input_parameter_name: "___fc_layer_0__@__recurrent_group_3__.w1"
}
bias_parameter_name: "___fc_layer_0__@__recurrent_group_3__.wbias"
}
layers {
name: "__fc_layer_0__"
type: "gather_agent"
size: 200
active_type: ""
}
layers {
name: "__last_seq_4__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__fc_layer_0__"
}
trans_type: "non-seq"
}
parameters {
name: "___mixed_0__.w0"
size: 40000
......@@ -481,6 +529,36 @@ parameters {
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_0__@__recurrent_group_3__.w0"
size: 20000
initial_mean: 0.0
initial_std: 0.1
dims: 100
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___fc_layer_0__@__recurrent_group_3__.w1"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106781187
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___fc_layer_0__@__recurrent_group_3__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
input_layer_names: "seq_input"
input_layer_names: "sub_seq_input"
output_layer_names: "__last_seq_0__"
......@@ -488,6 +566,7 @@ output_layer_names: "__first_seq_0__"
output_layer_names: "__last_seq_1__"
output_layer_names: "__last_seq_2__"
output_layer_names: "__last_seq_3__"
output_layer_names: "__last_seq_4__"
sub_models {
name: "root"
layer_names: "seq_input"
......@@ -510,6 +589,9 @@ sub_models {
layer_names: "__gru_group_0___recurrent_group"
layer_names: "__gru_group_0__"
layer_names: "__last_seq_3__"
layer_names: "__recurrent_group_3__"
layer_names: "__fc_layer_0__"
layer_names: "__last_seq_4__"
input_layer_names: "seq_input"
input_layer_names: "sub_seq_input"
output_layer_names: "__last_seq_0__"
......@@ -517,6 +599,7 @@ sub_models {
output_layer_names: "__last_seq_1__"
output_layer_names: "__last_seq_2__"
output_layer_names: "__last_seq_3__"
output_layer_names: "__last_seq_4__"
is_recurrent_layer_group: false
}
sub_models {
......@@ -647,4 +730,28 @@ sub_models {
}
target_inlinkid: -1
}
sub_models {
name: "__recurrent_group_3__"
layer_names: "seq_input@__recurrent_group_3__"
layer_names: "__memory_6__@__recurrent_group_3__"
layer_names: "__fc_layer_0__@__recurrent_group_3__"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "__fc_layer_0__@__recurrent_group_3__"
link_name: "__memory_6__@__recurrent_group_3__"
is_sequence: false
}
in_links {
layer_name: "seq_input"
link_name: "seq_input@__recurrent_group_3__"
has_subseq: false
}
out_links {
layer_name: "__fc_layer_0__@__recurrent_group_3__"
link_name: "__fc_layer_0__"
has_subseq: false
}
target_inlinkid: -1
}
......@@ -16,6 +16,16 @@ def generate_rnn_simple(name):
return rnn_simple
def generate_rnn_simple_no_name():
def rnn_simple(s):
m = memory(name=None, size=200)
fc = fc_layer(input=[s, m], size=200)
m.set_input(fc)
return fc
return rnn_simple
with mixed_layer() as lstm_param: # test lstm unit, rnn group
lstm_param += full_matrix_projection(input=seq, size=100 * 4)
......@@ -33,4 +43,6 @@ outputs(
last_seq(input=lstmemory_group(
input=lstm_param, size=100)),
last_seq(input=gru_group(
input=gru_param, size=100)))
input=gru_param, size=100)),
last_seq(input=recurrent_group(
step=generate_rnn_simple_no_name(), input=seq)), )
......@@ -22,7 +22,9 @@ import paddle.v2.networks as networks
pixel = layer.data(name='pixel', type=data_type.dense_vector(128))
label = layer.data(name='label', type=data_type.integer_value(10))
weight = layer.data(name='weight', type=data_type.dense_vector(10))
weight = layer.data(name='weight', type=data_type.dense_vector(1))
combine_weight = layer.data(
name='weight_combine', type=data_type.dense_vector(10))
score = layer.data(name='score', type=data_type.dense_vector(1))
hidden = layer.fc(input=pixel,
......@@ -81,7 +83,8 @@ class AggregateLayerTest(unittest.TestCase):
class MathLayerTest(unittest.TestCase):
def test_math_layer(self):
addto = layer.addto(input=[pixel, pixel])
linear_comb = layer.linear_comb(weights=weight, vectors=hidden, size=10)
linear_comb = layer.linear_comb(
weights=combine_weight, vectors=hidden, size=10)
interpolation = layer.interpolation(
input=[hidden, hidden], weight=score)
bilinear = layer.bilinear_interp(input=conv, out_size_x=4, out_size_y=4)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册