提交 339e655a 编写于 作者: T tensor-tang

refine and add seqconv elementwiseadd relu op test

上级 e5ce9659
...@@ -40,6 +40,7 @@ void FusionSeqConvEltAddReluOp::InferShape( ...@@ -40,6 +40,7 @@ void FusionSeqConvEltAddReluOp::InferShape(
auto x_dims = ctx->GetInputDim("X"); auto x_dims = ctx->GetInputDim("X");
auto w_dims = ctx->GetInputDim("Filter"); auto w_dims = ctx->GetInputDim("Filter");
int context_length = ctx->Attrs().Get<int>("contextLength");
PADDLE_ENFORCE( PADDLE_ENFORCE(
ctx->Attrs().Get<int>("contextStride") == 1, ctx->Attrs().Get<int>("contextStride") == 1,
"Currently, FusionSeqConvEltAddReluOp only supports contextStride=1."); "Currently, FusionSeqConvEltAddReluOp only supports contextStride=1.");
...@@ -47,10 +48,11 @@ void FusionSeqConvEltAddReluOp::InferShape( ...@@ -47,10 +48,11 @@ void FusionSeqConvEltAddReluOp::InferShape(
"Input(X, Filter) should be 2-D tensor."); "Input(X, Filter) should be 2-D tensor.");
PADDLE_ENFORCE(x_dims.size() == 2 && w_dims.size() == 2, PADDLE_ENFORCE(x_dims.size() == 2 && w_dims.size() == 2,
"Input(X, Filter) should be 2-D tensor."); "Input(X, Filter) should be 2-D tensor.");
PADDLE_ENFORCE( PADDLE_ENFORCE(w_dims[0] == context_length * x_dims[1],
w_dims[0] == ctx->Attrs().Get<int>("contextLength") * x_dims[1], "Filter's height should be context_length * "
"Filter's height should be context_length * " "input_hidden_size .");
"input_hidden_size ."); PADDLE_ENFORCE_GT(context_length + ctx->Attrs().Get<int>("contextStart"), 0,
"contextStart size should be smaller than contextLength.");
ctx->SetOutputDim("Out", {x_dims[0], w_dims[1]}); ctx->SetOutputDim("Out", {x_dims[0], w_dims[1]});
ctx->SetOutputDim("ColMat", {x_dims[0], w_dims[0]}); ctx->SetOutputDim("ColMat", {x_dims[0], w_dims[0]});
...@@ -156,9 +158,8 @@ class FusionSeqConvEltAddReluKernel : public framework::OpKernel<T> { ...@@ -156,9 +158,8 @@ class FusionSeqConvEltAddReluKernel : public framework::OpKernel<T> {
T* dst_data = col_data + st * col_mat_w; T* dst_data = col_data + st * col_mat_w;
int seq_len = ed - st; int seq_len = ed - st;
if (seq_len > up_pad + down_pad) { if (seq_len > up_pad + down_pad) {
// zero all up_pad // zero all up_pad and fill data
std::memset(dst_data, 0, up_pad * col_mat_w_sz); std::memset(dst_data, 0, up_pad * col_mat_w_sz);
// fill up_pad data
dst_data = dst_data + up_pad * src_mat_w; dst_data = dst_data + up_pad * src_mat_w;
int copy_size = col_mat_w_sz - up_pad * src_mat_w_sz; int copy_size = col_mat_w_sz - up_pad * src_mat_w_sz;
for (int j = 0; j < up_pad; ++j) { for (int j = 0; j < up_pad; ++j) {
...@@ -173,9 +174,8 @@ class FusionSeqConvEltAddReluKernel : public framework::OpKernel<T> { ...@@ -173,9 +174,8 @@ class FusionSeqConvEltAddReluKernel : public framework::OpKernel<T> {
dst_data += col_mat_w; dst_data += col_mat_w;
src_data += src_mat_w; src_data += src_mat_w;
} }
// zero all down_pad // zero all down_pad and fill data
std::memset(dst_data, 0, down_pad * col_mat_w_sz); std::memset(dst_data, 0, down_pad * col_mat_w_sz);
// fill down_pad data
copy_size -= src_mat_w_sz; copy_size -= src_mat_w_sz;
for (int j = 0; j < down_pad; ++j) { for (int j = 0; j < down_pad; ++j) {
std::memcpy(dst_data, src_data, copy_size); std::memcpy(dst_data, src_data, copy_size);
...@@ -186,27 +186,29 @@ class FusionSeqConvEltAddReluKernel : public framework::OpKernel<T> { ...@@ -186,27 +186,29 @@ class FusionSeqConvEltAddReluKernel : public framework::OpKernel<T> {
} else { } else {
PADDLE_ENFORCE_GE(context_length, up_pad + down_pad + 1); PADDLE_ENFORCE_GE(context_length, up_pad + down_pad + 1);
std::memset(dst_data, 0, seq_len * col_mat_w_sz); std::memset(dst_data, 0, seq_len * col_mat_w_sz);
dst_data = dst_data + up_pad * src_mat_w;
int zero_sz = up_pad * src_mat_w_sz; int zero_sz = up_pad * src_mat_w_sz;
int seq_len_size = seq_len * src_mat_w_sz; int cur_src_sz = seq_len * src_mat_w_sz;
for (int j = 0; j < std::min(up_pad, seq_len); ++j) { for (int j = 0; j < std::min(up_pad, seq_len); ++j) {
int copy_size = std::min(seq_len_size, col_mat_w_sz - zero_sz); int copy_size = std::min(cur_src_sz, col_mat_w_sz - zero_sz);
std::memcpy(dst_data + zero_sz / sizeof(T), src_data, copy_size); std::memcpy(dst_data, src_data, copy_size);
dst_data += col_mat_w; dst_data += (col_mat_w - src_mat_w);
zero_sz -= src_mat_w_sz; zero_sz -= src_mat_w_sz;
} }
// from bottom
dst_data = col_data + ed * col_mat_w;
src_data = x_data + st * src_mat_w;
zero_sz = down_pad * src_mat_w_sz; zero_sz = down_pad * src_mat_w_sz;
dst_data = col_data + (ed - 1) * col_mat_w; for (int j = 1; j <= std::min(down_pad, seq_len); ++j) {
src_data = x_data + (ed - up_pad - 1) * src_mat_w; int copy_size = std::min(cur_src_sz, col_mat_w_sz - zero_sz);
for (int j = 0; j < std::min(0, seq_len - up_pad); ++j) { std::memcpy(dst_data - (zero_sz + copy_size) / sizeof(T),
int copy_size = std::min(seq_len_size, col_mat_w_sz - zero_sz); src_data + std::max(seq_len - j - up_pad, 0) * src_mat_w,
std::memcpy(dst_data, src_data, copy_size); copy_size);
dst_data -= col_mat_w; dst_data -= col_mat_w;
src_data += src_mat_w;
zero_sz -= src_mat_w_sz; zero_sz -= src_mat_w_sz;
} }
} }
} }
auto& dev_ctx = ctx.template device_context<DeviceContext>(); auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx); auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
math::FCCompute<DeviceContext, T>(blas, x_dims[0], w_dims[1], w_dims[0], math::FCCompute<DeviceContext, T>(blas, x_dims[0], w_dims[1], w_dims[0],
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import random
from op_test import OpTest
from test_seq_conv import seqconv
class TestSeqConvEltAddRelu(OpTest):
def set_conf(self):
pass
def setUp(self):
self.op_type = 'fusion_seqconv_eltadd_relu'
self.lod = [[6, 4]]
self.in_fea_size = 16
self.out_fea_size = 8
self.context_length = 4
self.context_stride = 1
self.context_start = 0
self.set_conf()
assert self.context_stride == 1
T = sum(self.lod[0])
x = np.random.uniform(-1, 1, [T, self.in_fea_size]).astype('float32')
w = np.random.uniform(
-1, 1, [self.in_fea_size * self.context_length,
self.out_fea_size]).astype('float32')
b = np.random.uniform(-2, 1, [1, self.out_fea_size]).astype('float32')
out = seqconv(x, self.lod, w, self.context_length, self.context_start)
out = np.maximum(out + b, 0)
self.inputs = {'X': (x, self.lod), 'Filter': w, 'Bias': b}
self.attrs = {
'contextStart': self.context_start,
'contextLength': self.context_length,
'contextStride': self.context_stride
}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
class TestSeqConvEltAddReluBS1(TestSeqConvEltAddRelu):
def set_conf(self):
self.lod = [[10]]
class TestSeqConvEltAddReluBS1Case2(TestSeqConvEltAddRelu):
def set_conf(self):
self.lod = [[2]]
class TestSeqConvEltAddReluCase1(TestSeqConvEltAddRelu):
def set_conf(self):
self.lod = [[3, 5, 1, 6]]
self.context_length = 3
self.context_start = -2
class TestSeqConvEltAddReluCase2(TestSeqConvEltAddRelu):
def set_conf(self):
self.lod = [[10, 1, 2, 4, 1, 5, 6]]
self.in_fea_size = 2
self.context_length = 4
self.context_start = -1
class TestSeqConvEltAddReluCase3(TestSeqConvEltAddRelu):
def set_conf(self):
self.lod = [[10, 1, 2, 4, 1, 5, 6]]
self.context_length = 5
self.context_start = -4
if __name__ == '__main__':
unittest.main()
...@@ -20,6 +20,53 @@ import random ...@@ -20,6 +20,53 @@ import random
from op_test import OpTest from op_test import OpTest
def seqconv(x,
lod,
filter,
context_length,
context_start,
padding_trainable=False,
padding_data=None):
[T, M] = x.shape
col = np.zeros((T, context_length * M)).astype('float32')
offset = [0]
for seq_len in lod[0]:
offset.append(offset[-1] + seq_len)
begin_pad = np.max([0, -context_start])
for i in range(len(offset) - 1):
for j in range(context_length):
in_begin = offset[i] + context_start + j
in_end = offset[i + 1] + context_start + j
out_begin = offset[i]
out_end = offset[i + 1]
if in_begin < offset[i]:
pad_size = np.min(
[offset[i] - in_begin, offset[i + 1] - offset[i]])
if padding_trainable:
sub_w = padding_data[j:j + pad_size, :]
col[offset[i]:offset[i] + pad_size, j * M:(j + 1) *
M] = sub_w
out_begin = offset[i] + pad_size
in_begin = offset[i]
if in_end > offset[i + 1]:
pad_size = np.min(
[in_end - offset[i + 1], offset[i + 1] - offset[i]])
if padding_trainable:
sub_w = padding_data[begin_pad + context_start + j -
pad_size:begin_pad + context_start +
j, :]
col[offset[i + 1] - pad_size:offset[i + 1], j * M:(j + 1) *
M] = sub_w
in_end = offset[i + 1]
out_end = offset[i + 1] - pad_size
if in_end <= in_begin:
continue
in_sub = x[in_begin:in_end, :]
col[out_begin:out_end, j * M:(j + 1) * M] += in_sub
return np.dot(col, filter)
class TestSeqProject(OpTest): class TestSeqProject(OpTest):
def setUp(self): def setUp(self):
self.init_test_case() self.init_test_case()
...@@ -66,57 +113,9 @@ class TestSeqProject(OpTest): ...@@ -66,57 +113,9 @@ class TestSeqProject(OpTest):
'paddingTrainable': self.padding_trainable, 'paddingTrainable': self.padding_trainable,
'contextStride': self.context_stride 'contextStride': self.context_stride
} }
out = np.zeros( out = seqconv(x, self.lod, w, self.context_length, self.context_start,
(self.input_size[0], self.output_represention)).astype('float32') self.padding_trainable, self.pad_data)
self.outputs = {'Out': out} self.outputs = {'Out': out}
self.compute()
def compute(self):
x, lod = self.inputs['X']
filter = self.inputs['Filter']
pading_data = self.pad_data
out = np.zeros((self.input_size[0], self.context_length *
self.input_size[1])).astype('float32')
offset = [0]
for seq_len in lod[0]:
offset.append(offset[-1] + seq_len)
begin_pad = np.max([0, -self.context_start])
for i in range(len(offset) - 1):
for j in range(self.context_length):
in_begin = offset[i] + self.context_start + j
in_end = offset[i + 1] + self.context_start + j
out_begin = offset[i]
out_end = offset[i + 1]
if in_begin < offset[i]:
pad_size = np.min(
[offset[i] - in_begin, offset[i + 1] - offset[i]])
if self.padding_trainable:
sub_w = pading_data[j:j + pad_size, :]
out[offset[i]:offset[i] + pad_size, j * self.input_size[
1]:(j + 1) * self.input_size[1]] = sub_w
out_begin = offset[i] + pad_size
in_begin = offset[i]
if in_end > offset[i + 1]:
pad_size = np.min(
[in_end - offset[i + 1], offset[i + 1] - offset[i]])
if self.padding_trainable:
sub_w = pading_data[begin_pad + self.context_start + j -
pad_size:begin_pad +
self.context_start + j, :]
out[offset[i + 1] - pad_size:offset[i + 1], j * self.
input_size[1]:(j + 1) * self.input_size[1]] = sub_w
in_end = offset[i + 1]
out_end = offset[i + 1] - pad_size
if in_end <= in_begin:
continue
in_sub = x[in_begin:in_end, :]
out[out_begin:out_end, j * self.input_size[1]:(j + 1) *
self.input_size[1]] += in_sub
np.dot(out, filter, out=self.outputs['Out'])
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册