Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
325b2caf
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
325b2caf
编写于
3月 03, 2017
作者:
T
Tao Luo
提交者:
GitHub
3月 03, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1506 from luotao1/mnist
mnist api v2
上级
736434c9
e69a1cbd
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
89 addition
and
23 deletion
+89
-23
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+87
-22
python/paddle/v2/event.py
python/paddle/v2/event.py
+2
-1
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
325b2caf
import
paddle.v2
as
paddle
import
paddle.v2
as
paddle
def
softmax_regression
(
img
):
predict
=
paddle
.
layer
.
fc
(
input
=
img
,
size
=
10
,
act
=
paddle
.
activation
.
Softmax
())
return
predict
def
multilayer_perceptron
(
img
):
# The first fully-connected layer
hidden1
=
paddle
.
layer
.
fc
(
input
=
img
,
size
=
128
,
act
=
paddle
.
activation
.
Relu
())
# The second fully-connected layer and the according activation function
hidden2
=
paddle
.
layer
.
fc
(
input
=
hidden1
,
size
=
64
,
act
=
paddle
.
activation
.
Relu
())
# The thrid fully-connected layer, note that the hidden size should be 10,
# which is the number of unique digits
predict
=
paddle
.
layer
.
fc
(
input
=
hidden2
,
size
=
10
,
act
=
paddle
.
activation
.
Softmax
())
return
predict
def
convolutional_neural_network
(
img
):
# first conv layer
conv_pool_1
=
paddle
.
networks
.
simple_img_conv_pool
(
input
=
img
,
filter_size
=
5
,
num_filters
=
20
,
num_channel
=
1
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
paddle
.
activation
.
Tanh
())
# second conv layer
conv_pool_2
=
paddle
.
networks
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
num_channel
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
paddle
.
activation
.
Tanh
())
# The first fully-connected layer
fc1
=
paddle
.
layer
.
fc
(
input
=
conv_pool_2
,
size
=
128
,
act
=
paddle
.
activation
.
Tanh
())
# The softmax layer, note that the hidden size should be 10,
# which is the number of unique digits
predict
=
paddle
.
layer
.
fc
(
input
=
fc1
,
size
=
10
,
act
=
paddle
.
activation
.
Softmax
())
return
predict
def
main
():
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
...
@@ -9,46 +62,58 @@ def main():
...
@@ -9,46 +62,58 @@ def main():
name
=
'pixel'
,
type
=
paddle
.
data_type
.
dense_vector
(
784
))
name
=
'pixel'
,
type
=
paddle
.
data_type
.
dense_vector
(
784
))
label
=
paddle
.
layer
.
data
(
label
=
paddle
.
layer
.
data
(
name
=
'label'
,
type
=
paddle
.
data_type
.
integer_value
(
10
))
name
=
'label'
,
type
=
paddle
.
data_type
.
integer_value
(
10
))
hidden1
=
paddle
.
layer
.
fc
(
input
=
images
,
size
=
200
)
hidden2
=
paddle
.
layer
.
fc
(
input
=
hidden1
,
size
=
200
)
# Here we can build the prediction network in different ways. Please
inference
=
paddle
.
layer
.
fc
(
input
=
hidden2
,
# choose one by uncomment corresponding line.
size
=
10
,
predict
=
softmax_regression
(
images
)
act
=
paddle
.
activation
.
Softmax
())
#predict = multilayer_perceptron(images)
cost
=
paddle
.
layer
.
classification_cost
(
input
=
inference
,
label
=
label
)
#predict = convolutional_neural_network(images)
cost
=
paddle
.
layer
.
classification_cost
(
input
=
predict
,
label
=
label
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
adam_optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
0.1
/
128.0
,
momentum
=
0.9
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
0.0005
*
128
))
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
parameters
=
parameters
,
update_equation
=
adam_optimizer
)
update_equation
=
optimizer
)
lists
=
[]
def
event_handler
(
event
):
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
1000
==
0
:
if
event
.
batch_id
%
100
==
0
:
result
=
trainer
.
test
(
reader
=
paddle
.
reader
.
batched
(
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
256
))
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
print
"Pass %d, Batch %d, Cost %.2f, %s
\n
"
\
result
=
trainer
.
test
(
reader
=
paddle
.
reader
.
batched
(
"Testing cost %.2f metrics %s"
%
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
128
))
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
print
"Test with Pass %d, Cost %f, %s
\n
"
%
(
event
.
metrics
,
event
.
pass_id
,
result
.
cost
,
result
.
metrics
)
result
.
cost
,
result
.
metrics
)
lists
.
append
((
event
.
pass_id
,
result
.
cost
,
else
:
result
.
metrics
[
'classification_error_evaluator'
]))
pass
trainer
.
train
(
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
8192
),
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
8192
),
batch_size
=
32
),
batch_size
=
128
),
event_handler
=
event_handler
)
event_handler
=
event_handler
,
num_passes
=
100
)
# find the best pass
best
=
sorted
(
lists
,
key
=
lambda
list
:
float
(
list
[
1
]))[
0
]
print
'Best pass is %s, testing Avgcost is %s'
%
(
best
[
0
],
best
[
1
])
print
'The classification accuracy is %.2f%%'
%
(
100
-
float
(
best
[
2
])
*
100
)
# output is a softmax layer. It returns probabilities.
# output is a softmax layer. It returns probabilities.
# Shape should be (100, 10)
# Shape should be (100, 10)
probs
=
paddle
.
infer
(
probs
=
paddle
.
infer
(
output
=
inference
,
output
=
predict
,
parameters
=
parameters
,
parameters
=
parameters
,
reader
=
paddle
.
reader
.
batched
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
firstn
(
paddle
.
reader
.
firstn
(
...
...
python/paddle/v2/event.py
浏览文件 @
325b2caf
...
@@ -53,8 +53,9 @@ class EndPass(WithMetric):
...
@@ -53,8 +53,9 @@ class EndPass(WithMetric):
Event On One Pass Training Complete.
Event On One Pass Training Complete.
"""
"""
def
__init__
(
self
,
pass_id
,
evaluator
):
def
__init__
(
self
,
pass_id
,
cost
,
evaluator
):
self
.
pass_id
=
pass_id
self
.
pass_id
=
pass_id
self
.
cost
=
cost
WithMetric
.
__init__
(
self
,
evaluator
)
WithMetric
.
__init__
(
self
,
evaluator
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录