Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2f3950ee
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2f3950ee
编写于
11月 19, 2021
作者:
F
Feng Ni
提交者:
GitHub
11月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MOT] refine mtmct deploy (#4633)
* fix mtmct deploy * add enable_static
上级
7fc9614a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
19 addition
and
60 deletion
+19
-60
deploy/pptracking/python/mot/mtmct/utils.py
deploy/pptracking/python/mot/mtmct/utils.py
+1
-0
deploy/pptracking/python/mot_sde_infer.py
deploy/pptracking/python/mot_sde_infer.py
+18
-60
未找到文件。
deploy/pptracking/python/mot/mtmct/utils.py
浏览文件 @
2f3950ee
...
...
@@ -341,6 +341,7 @@ def visual_rerank(prb_feats,
prb_feats
,
gal_feats
=
run_fac
(
prb_feats
,
gal_feats
,
prb_labels
,
gal_labels
,
0.08
,
20
,
0.5
,
1
,
1
)
if
use_rerank
:
paddle
.
enable_static
()
print
(
'current use rerank finetuned parameters....'
)
# Step2: k-reciprocal. finetuned parameters: [k1,k2,lambda_value]
sims
=
ReRank2
(
...
...
deploy/pptracking/python/mot_sde_infer.py
浏览文件 @
2f3950ee
...
...
@@ -32,7 +32,7 @@ from benchmark_utils import PaddleInferBenchmark
from
visualize
import
plot_tracking
from
mot.tracker
import
DeepSORTTracker
from
mot.utils
import
MOTTimer
,
write_mot_results
,
flow_statistic
from
mot.utils
import
MOTTimer
,
write_mot_results
,
flow_statistic
,
scale_coords
,
clip_box
,
preprocess_reid
from
mot.mtmct.utils
import
parse_bias
from
mot.mtmct.postprocess
import
trajectory_fusion
,
sub_cluster
,
gen_res
,
print_mtmct_result
...
...
@@ -59,50 +59,6 @@ def bench_log(detector, img_list, model_info, batch_size=1, name=None):
log
(
name
)
def
scale_coords
(
coords
,
input_shape
,
im_shape
,
scale_factor
):
im_shape
=
im_shape
[
0
]
ratio
=
scale_factor
[
0
][
0
]
pad_w
=
(
input_shape
[
1
]
-
int
(
im_shape
[
1
]))
/
2
pad_h
=
(
input_shape
[
0
]
-
int
(
im_shape
[
0
]))
/
2
coords
[:,
0
::
2
]
-=
pad_w
coords
[:,
1
::
2
]
-=
pad_h
coords
[:,
0
:
4
]
/=
ratio
coords
[:,
:
4
]
=
np
.
clip
(
coords
[:,
:
4
],
a_min
=
0
,
a_max
=
coords
[:,
:
4
].
max
())
return
coords
.
round
()
def
clip_box
(
xyxy
,
input_shape
,
im_shape
,
scale_factor
):
im_shape
=
im_shape
[
0
]
ratio
=
scale_factor
[
0
][
0
]
img0_shape
=
[
int
(
im_shape
[
0
]
/
ratio
),
int
(
im_shape
[
1
]
/
ratio
)]
xyxy
[:,
0
::
2
]
=
np
.
clip
(
xyxy
[:,
0
::
2
],
a_min
=
0
,
a_max
=
img0_shape
[
1
])
xyxy
[:,
1
::
2
]
=
np
.
clip
(
xyxy
[:,
1
::
2
],
a_min
=
0
,
a_max
=
img0_shape
[
0
])
w
=
xyxy
[:,
2
:
3
]
-
xyxy
[:,
0
:
1
]
h
=
xyxy
[:,
3
:
4
]
-
xyxy
[:,
1
:
2
]
mask
=
np
.
logical_and
(
h
>
0
,
w
>
0
)
keep_idx
=
np
.
nonzero
(
mask
)
return
xyxy
[
keep_idx
[
0
]],
keep_idx
def
preprocess_reid
(
imgs
,
w
=
64
,
h
=
192
,
mean
=
[
0.485
,
0.456
,
0.406
],
std
=
[
0.229
,
0.224
,
0.225
]):
im_batch
=
[]
for
img
in
imgs
:
img
=
cv2
.
resize
(
img
,
(
w
,
h
))
img
=
img
[:,
:,
::
-
1
].
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
img_mean
=
np
.
array
(
mean
).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
(
std
).
reshape
((
3
,
1
,
1
))
img
-=
img_mean
img
/=
img_std
img
=
np
.
expand_dims
(
img
,
axis
=
0
)
im_batch
.
append
(
img
)
im_batch
=
np
.
concatenate
(
im_batch
,
0
)
return
im_batch
class
SDE_Detector
(
Detector
):
"""
Args:
...
...
@@ -146,8 +102,7 @@ class SDE_Detector(Detector):
assert
batch_size
==
1
,
"The JDE Detector only supports batch size=1 now"
self
.
pred_config
=
pred_config
def
postprocess
(
self
,
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
,
scaled
):
def
postprocess
(
self
,
boxes
,
ori_image_shape
,
threshold
,
scaled
):
over_thres_idx
=
np
.
nonzero
(
boxes
[:,
1
:
2
]
>=
threshold
)[
0
]
if
len
(
over_thres_idx
)
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
...
...
@@ -165,8 +120,8 @@ class SDE_Detector(Detector):
else
:
pred_bboxes
=
boxes
[:,
2
:]
pred_xyxys
,
keep_idx
=
clip_box
(
pred_bboxes
,
input_shape
,
im_shape
,
scale_factor
)
pred_xyxys
,
keep_idx
=
clip_box
(
pred_bboxes
,
ori_image_shape
)
if
len
(
keep_idx
[
0
])
==
0
:
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
...
...
@@ -183,10 +138,12 @@ class SDE_Detector(Detector):
return
pred_dets
,
pred_xyxys
def
predict
(
self
,
image
,
scaled
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
def
predict
(
self
,
image
_path
,
ori_image_shape
,
scaled
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
):
'''
Args:
image (np.ndarray): image numpy data
image_path (list[str]): path of images, only support one image path
(batch_size=1) in tracking model
ori_image_shape (list[int]: original image shape
threshold (float): threshold of predicted box' score
scaled (bool): whether the coords after detector outputs are scaled,
default False in jde yolov3, set True in general detector.
...
...
@@ -194,7 +151,7 @@ class SDE_Detector(Detector):
pred_dets (np.ndarray, [N, 6])
'''
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
inputs
=
self
.
preprocess
(
image
_path
)
self
.
det_times
.
preprocess_time_s
.
end
()
input_names
=
self
.
predictor
.
get_input_names
()
...
...
@@ -221,12 +178,8 @@ class SDE_Detector(Detector):
pred_dets
=
np
.
zeros
((
1
,
6
),
dtype
=
np
.
float32
)
pred_xyxys
=
np
.
zeros
((
1
,
4
),
dtype
=
np
.
float32
)
else
:
input_shape
=
inputs
[
'image'
].
shape
[
2
:]
im_shape
=
inputs
[
'im_shape'
]
scale_factor
=
inputs
[
'scale_factor'
]
pred_dets
,
pred_xyxys
=
self
.
postprocess
(
boxes
,
input_shape
,
im_shape
,
scale_factor
,
threshold
,
scaled
)
boxes
,
ori_image_shape
,
threshold
,
scaled
)
self
.
det_times
.
postprocess_time_s
.
end
()
self
.
det_times
.
img_num
+=
1
...
...
@@ -727,7 +680,9 @@ def predict_mtmct_seq(detector, reid_model, seq_name, output_dir):
if
frame_id
%
40
==
0
:
print
(
'Processing frame {} of seq {}.'
.
format
(
frame_id
,
seq_name
))
frame
=
cv2
.
imread
(
os
.
path
.
join
(
fpath
,
img_file
))
pred_dets
,
pred_xyxys
=
detector
.
predict
([
frame
],
FLAGS
.
scaled
,
ori_image_shape
=
list
(
frame
.
shape
[:
2
])
frame_path
=
os
.
path
.
join
(
fpath
,
img_file
)
pred_dets
,
pred_xyxys
=
detector
.
predict
([
frame_path
],
ori_image_shape
,
FLAGS
.
scaled
,
FLAGS
.
threshold
)
if
len
(
pred_dets
)
==
1
and
np
.
sum
(
pred_dets
)
==
0
:
...
...
@@ -855,8 +810,6 @@ def predict_mtmct(detector, reid_model, mtmct_dir, mtmct_cfg):
use_roi
=
use_roi
,
roi_dir
=
roi_dir
)
pred_mtmct_file
=
os
.
path
.
join
(
output_dir
,
'mtmct_result.txt'
)
if
FLAGS
.
save_images
:
carame_results
,
cid_tid_fid_res
=
get_mtmct_matching_results
(
pred_mtmct_file
)
...
...
@@ -872,6 +825,11 @@ def predict_mtmct(detector, reid_model, mtmct_dir, mtmct_cfg):
save_dir
=
save_dir
,
save_videos
=
FLAGS
.
save_images
)
# evalution metrics
data_root_gt
=
os
.
path
.
join
(
mtmct_dir
,
'..'
,
'gt'
,
'gt.txt'
)
if
os
.
path
.
exists
(
data_root_gt
):
print_mtmct_result
(
data_root_gt
,
pred_mtmct_file
)
def
main
():
pred_config
=
PredictConfig
(
FLAGS
.
model_dir
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录