Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2e87d747
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2e87d747
编写于
8月 11, 2017
作者:
Y
Yiqun Liu
提交者:
GitHub
8月 11, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3337 from tensor-tang/merge
Enable mkldnn_fc for general format
上级
f5812541
2d4c66d4
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
1213 addition
and
3 deletion
+1213
-3
CMakeLists.txt
CMakeLists.txt
+1
-1
paddle/gserver/CMakeLists.txt
paddle/gserver/CMakeLists.txt
+11
-0
paddle/gserver/layers/MKLDNNBase.h
paddle/gserver/layers/MKLDNNBase.h
+97
-0
paddle/gserver/layers/MKLDNNFcLayer.cpp
paddle/gserver/layers/MKLDNNFcLayer.cpp
+282
-0
paddle/gserver/layers/MKLDNNFcLayer.h
paddle/gserver/layers/MKLDNNFcLayer.h
+80
-0
paddle/gserver/layers/MKLDNNLayer.h
paddle/gserver/layers/MKLDNNLayer.h
+132
-0
paddle/gserver/tests/CMakeLists.txt
paddle/gserver/tests/CMakeLists.txt
+9
-0
paddle/gserver/tests/MKLDNNTester.cpp
paddle/gserver/tests/MKLDNNTester.cpp
+369
-0
paddle/gserver/tests/MKLDNNTester.h
paddle/gserver/tests/MKLDNNTester.h
+120
-0
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+76
-0
paddle/trainer/TrainerConfigHelper.cpp
paddle/trainer/TrainerConfigHelper.cpp
+4
-0
paddle/utils/Flags.cpp
paddle/utils/Flags.cpp
+8
-0
paddle/utils/Flags.h
paddle/utils/Flags.h
+2
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+22
-2
未找到文件。
CMakeLists.txt
浏览文件 @
2e87d747
...
...
@@ -144,7 +144,7 @@ if(WITH_GPU)
endif
(
WITH_GPU
)
if
(
WITH_MKLDNN
)
list
(
APPEND EXTERNAL_LIBS
${
MKLDNN_LIB
RARY
}
${
MKLDNN_IOMP_LIB
}
)
list
(
APPEND EXTERNAL_LIBS
${
MKLDNN_LIB
}
${
MKLDNN_IOMP_LIB
}
)
endif
()
if
(
USE_NNPACK
)
...
...
paddle/gserver/CMakeLists.txt
浏览文件 @
2e87d747
...
...
@@ -23,6 +23,17 @@ endmacro()
filter_test
(
GSERVER_HEADER
)
filter_test
(
GSERVER_SOURCES
)
if
(
NOT WITH_MKLDNN
)
file
(
GLOB_RECURSE DNN_HEADER RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"MKLDNN*.h"
)
file
(
GLOB_RECURSE DNN_SOURCES RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"MKLDNN*.cpp"
)
list
(
REMOVE_ITEM GSERVER_HEADER
${
DNN_HEADER
}
)
list
(
REMOVE_ITEM GSERVER_SOURCES
${
DNN_SOURCES
}
)
message
(
STATUS
"Skip compiling with MKLDNNLayers and MKLDNNActivations"
)
else
()
message
(
STATUS
"Compile with MKLDNNLayers and MKLDNNActivations"
)
endif
()
if
(
NOT WITH_GPU
)
list
(
REMOVE_ITEM GSERVER_HEADER
layers/CudnnConvBaseLayer.h
...
...
paddle/gserver/layers/MKLDNNBase.h
0 → 100644
浏览文件 @
2e87d747
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "mkldnn.hpp"
namespace
paddle
{
typedef
enum
{
MKLDNN_BASE
=
1
,
// basical info of MKLDNN
MKLDNN_TESTS
=
1
,
// gtest info of MKLDNN
MKLDNN_SIZES
=
2
,
// size info of MKLDNN
MKLDNN_FMTS
=
3
,
// format info of MKLDNN
MKLDNN_ALL
=
4
,
// show all info of MKLDNN
}
MKLDNN_LOG_LEVEL
;
/**
* @brief MKLDNN CPU engine.
*
*/
class
CPUEngine
{
public:
static
CPUEngine
&
Instance
()
{
// Thread-safe in C++11.
static
CPUEngine
myInstance
;
return
myInstance
;
}
// Disallow copy or move
CPUEngine
(
const
CPUEngine
&
)
=
delete
;
// Copy constructor
CPUEngine
(
CPUEngine
&&
)
=
delete
;
// Move constructor
CPUEngine
&
operator
=
(
const
CPUEngine
&
)
=
delete
;
// Copy assignment
CPUEngine
&
operator
=
(
CPUEngine
&&
)
=
delete
;
// Move assignment
mkldnn
::
engine
&
getEngine
()
{
return
cpuEngine_
;
}
protected:
CPUEngine
()
:
cpuEngine_
(
mkldnn
::
engine
::
cpu
,
0
)
{}
// CPUEngine() : cpuEngine_(mkldnn::engine::cpu_lazy, 0) {}
~
CPUEngine
()
{}
private:
mkldnn
::
engine
cpuEngine_
;
};
/**
* @brief MKLDNN Stream.
*
*/
class
MKLDNNStream
{
public:
MKLDNNStream
()
:
ready_
(
false
)
{
resetState
();
}
virtual
~
MKLDNNStream
()
{}
/**
* @brief Submit stream
* @param prims The primitives vector
* @param block Waiting for the stream to complete
*/
void
submit
(
std
::
vector
<
mkldnn
::
primitive
>&
prims
,
bool
block
=
true
)
{
resetState
();
stream_
->
submit
(
prims
).
wait
(
block
);
ready_
=
false
;
}
/**
* @brief Reset the mkldnn stream
*/
void
resetState
()
{
if
(
ready_
)
{
return
;
}
// TODO(TJ): change me when mkldnn have method to reset this state
// stream_.reset(new mkldnn::stream(mkldnn::stream::kind::lazy));
stream_
.
reset
(
new
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
));
ready_
=
true
;
}
private:
bool
ready_
;
std
::
shared_ptr
<
mkldnn
::
stream
>
stream_
;
};
}
// namespace paddle
paddle/gserver/layers/MKLDNNFcLayer.cpp
0 → 100644
浏览文件 @
2e87d747
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNFcLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
using
namespace
mkldnn
;
// NOLINT
typedef
memory
::
format
format
;
typedef
inner_product_forward
fc_fwd
;
typedef
inner_product_backward_weights
fc_bwdWgt
;
typedef
inner_product_backward_data
fc_bwdData
;
namespace
paddle
{
REGISTER_LAYER
(
mkldnn_fc
,
MKLDNNFcLayer
);
bool
MKLDNNFcLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
MKLDNNLayer
::
init
(
layerMap
,
parameterMap
))
{
return
false
;
}
CHECK_EQ
(
inputLayers_
.
size
(),
1
)
<<
"Only support one input layer yet"
;
CHECK_EQ
(
inputLayers_
.
size
(),
parameters_
.
size
());
CHECK
(
!
parameters_
[
0
]
->
isSparse
())
<<
"Do not support sparse yet"
;
// output size, cat not be changed
oc_
=
getSize
();
oh_
=
1
;
ow_
=
1
;
// input size can not change in FC
iLayerSize_
=
inputLayers_
[
0
]
->
getSize
();
CHECK_EQ
(
parameters_
[
0
]
->
getSize
(),
iLayerSize_
*
oc_
);
// create weight
weight_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
oc_
,
iLayerSize_
,
parameters_
[
0
],
0
));
// create biases
if
(
biasParameter_
.
get
()
!=
NULL
)
{
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
1
,
oc_
,
biasParameter_
));
}
return
true
;
}
void
MKLDNNFcLayer
::
convertWeightsFromPaddle
()
{
if
(
FLAGS_use_mkldnn_wgt
)
{
return
;
}
if
(
hasInitedWgt_
)
{
return
;
}
// The weight_ is transposed from initial paddle weight
MatrixPtr
paddleWgt
=
Matrix
::
create
(
weight_
->
getW
()
->
getData
(),
iLayerSize_
,
oc_
,
false
,
false
);
// TODO(TJ): remove this print when do not need differ weights
std
::
ostringstream
ostr
;
paddleWgt
->
print
(
ostr
);
VLOG
(
MKLDNN_ALL
)
<<
"Initial Weight from paddle: "
<<
std
::
endl
<<
ostr
.
str
();
// The mkldnn weight is transposed from initial paddle matrix
MatrixPtr
paddleWgtT
;
paddleWgt
->
transpose
(
paddleWgtT
,
true
);
weight_
->
getW
()
->
copyFrom
(
*
paddleWgtT
);
hasInitedWgt_
=
true
;
}
void
MKLDNNFcLayer
::
convertWeightsToPaddle
()
{
MatrixPtr
dnnWgt
=
weight_
->
getW
();
MatrixPtr
paddleWgt
;
dnnWgt
->
transpose
(
paddleWgt
,
true
);
// copy paddle weight and override on weight_
MatrixPtr
dnnWgtT
=
Matrix
::
create
(
dnnWgt
->
getData
(),
dnnWgt
->
getWidth
(),
dnnWgt
->
getHeight
(),
false
,
false
);
dnnWgtT
->
copyFrom
(
*
paddleWgt
);
}
void
MKLDNNFcLayer
::
reshape
()
{
const
Argument
&
input
=
getInput
(
0
);
int
batchSize
=
input
.
getBatchSize
();
if
(
bs_
==
batchSize
)
{
return
;
}
bs_
=
batchSize
;
ih_
=
input
.
getFrameHeight
();
iw_
=
input
.
getFrameWidth
();
if
(
ih_
==
0
)
{
ih_
=
1
;
}
if
(
iw_
==
0
)
{
iw_
=
1
;
}
hasSpatial_
=
true
;
if
(
ih_
==
1
&&
iw_
==
1
)
{
hasSpatial_
=
false
;
}
CHECK_EQ
(
iLayerSize_
,
inputLayers_
[
0
]
->
getSize
());
ic_
=
iLayerSize_
/
(
ih_
*
iw_
);
CHECK_EQ
(
size_t
(
ic_
*
ih_
*
iw_
),
iLayerSize_
)
<<
"not divisible"
;
CHECK_EQ
(
size_t
(
oc_
),
getSize
());
printSizeInfo
();
// reset output
output_
.
setFrameHeight
(
oh_
);
output_
.
setFrameWidth
(
ow_
);
resetOutput
(
bs_
,
oc_
);
// reset mkldnn forward
resetFwd
();
needResetBwd_
=
true
;
convertWeightsFromPaddle
();
}
void
MKLDNNFcLayer
::
resetFwd
()
{
bool
hasBias
=
biases_
&&
biases_
->
getW
();
real
*
iData
=
getInputValue
(
0
)
->
getData
();
real
*
oData
=
getOutputValue
()
->
getData
();
real
*
wData
=
weight_
->
getW
()
->
getData
();
real
*
bData
=
hasBias
?
biases_
->
getW
()
->
getData
()
:
NULL
;
// TODO(TJ): below create should be covered in MkldnnMatrix
// create memory desc
memory
::
desc
iMD
=
hasSpatial_
?
createMD
({
bs_
,
ic_
,
ih_
,
iw_
},
format
::
nchw
)
:
createMD
({
bs_
,
ic_
},
format
::
nc
);
memory
::
desc
wMD
=
hasSpatial_
?
createMD
({
oc_
,
ic_
,
ih_
,
iw_
},
format
::
oihw
)
:
createMD
({
oc_
,
ic_
},
format
::
oi
);
memory
::
desc
bMD
=
bData
!=
NULL
?
createMD
({
oc_
},
format
::
x
)
:
createMD
({},
format
::
format_undef
);
memory
::
desc
oMD
=
createMD
({
bs_
,
oc_
},
format
::
nc
);
// create memory primitive desc and memory self
inVal_
.
reset
(
new
memory
(
memory
::
primitive_desc
(
iMD
,
engine_
),
iData
));
wgtVal_
.
reset
(
new
memory
(
memory
::
primitive_desc
(
wMD
,
engine_
),
wData
));
outVal_
.
reset
(
new
memory
(
memory
::
primitive_desc
(
oMD
,
engine_
),
oData
));
prop_kind
pk
=
prop_kind
::
forward
;
fc_fwd
::
desc
fwdDesc
=
bData
!=
NULL
?
fc_fwd
::
desc
(
pk
,
iMD
,
wMD
,
bMD
,
oMD
)
:
fc_fwd
::
desc
(
pk
,
iMD
,
wMD
,
oMD
);
fc_fwd
::
primitive_desc
fwdPD
=
fc_fwd
::
primitive_desc
(
fwdDesc
,
engine_
);
if
(
bData
!=
NULL
)
{
biasVal_
.
reset
(
new
memory
(
memory
::
primitive_desc
(
bMD
,
engine_
),
bData
));
fwd_
.
reset
(
new
fc_fwd
(
fwdPD
,
*
inVal_
,
*
wgtVal_
,
*
biasVal_
,
*
outVal_
));
}
else
{
fwd_
.
reset
(
new
fc_fwd
(
fwdPD
,
*
inVal_
,
*
wgtVal_
,
*
outVal_
));
}
pipelineFwd_
.
clear
();
pipelineFwd_
.
push_back
(
*
fwd_
);
}
void
MKLDNNFcLayer
::
resetBwd
()
{
if
(
!
needResetBwd_
)
{
return
;
}
needResetBwd_
=
false
;
bool
hasBias
=
biases_
&&
biases_
->
getWGrad
();
real
*
iData
=
getInputValue
(
0
)
->
getData
();
real
*
iDiff
=
getInputGrad
(
0
)
!=
nullptr
?
getInputGrad
(
0
)
->
getData
()
:
NULL
;
real
*
oDiff
=
getOutputGrad
()
->
getData
();
real
*
wDiff
=
weight_
->
getWGrad
()
->
getData
();
real
*
bDiff
=
hasBias
?
biases_
->
getWGrad
()
->
getData
()
:
NULL
;
/// backward weight
// create memory desc for backward memory
memory
::
desc
iMD
=
hasSpatial_
?
createMD
({
bs_
,
ic_
,
ih_
,
iw_
},
format
::
nchw
)
:
createMD
({
bs_
,
ic_
},
format
::
nc
);
memory
::
desc
wMD
=
hasSpatial_
?
createMD
({
oc_
,
ic_
,
ih_
,
iw_
},
format
::
oihw
)
:
createMD
({
oc_
,
ic_
},
format
::
oi
);
memory
::
desc
oMD
=
createMD
({
bs_
,
oc_
},
format
::
nc
);
memory
::
desc
bMD
=
bDiff
!=
NULL
?
createMD
({
oc_
},
format
::
x
)
:
createMD
({},
format
::
format_undef
);
if
(
inVal_
)
{
// update data
inVal_
->
set_data_handle
(
iData
);
}
else
{
inVal_
.
reset
(
new
memory
(
memory
::
primitive_desc
(
iMD
,
engine_
),
iData
));
}
// create memory primitive desc and memory self
wgtGrad_
.
reset
(
new
memory
(
memory
::
primitive_desc
(
wMD
,
engine_
),
wDiff
));
outGrad_
.
reset
(
new
memory
(
memory
::
primitive_desc
(
oMD
,
engine_
),
oDiff
));
fc_fwd
::
desc
fwdDesc
=
fc_fwd
::
desc
(
prop_kind
::
forward
,
iMD
,
wMD
,
oMD
);
fc_fwd
::
primitive_desc
fwdPD
=
fc_fwd
::
primitive_desc
(
fwdDesc
,
engine_
);
fc_bwdWgt
::
desc
bwdWgtDesc
=
bDiff
!=
NULL
?
fc_bwdWgt
::
desc
(
iMD
,
wMD
,
bMD
,
oMD
)
:
fc_bwdWgt
::
desc
(
iMD
,
wMD
,
oMD
);
fc_bwdWgt
::
primitive_desc
bwdWgtPD
=
fc_bwdWgt
::
primitive_desc
(
bwdWgtDesc
,
engine_
,
fwdPD
);
if
(
bDiff
!=
NULL
)
{
biasGrad_
.
reset
(
new
memory
(
memory
::
primitive_desc
(
bMD
,
engine_
),
bDiff
));
bwdWgt_
.
reset
(
new
fc_bwdWgt
(
bwdWgtPD
,
*
inVal_
,
*
outGrad_
,
*
wgtGrad_
,
*
biasGrad_
));
}
else
{
bwdWgt_
.
reset
(
new
fc_bwdWgt
(
bwdWgtPD
,
*
inVal_
,
*
outGrad_
,
*
wgtGrad_
));
}
pipelineBwd_
.
clear
();
pipelineBwd_
.
push_back
(
*
bwdWgt_
);
/// backward data
if
(
iDiff
==
NULL
)
{
return
;
}
fc_bwdData
::
desc
bwdDataDesc
=
fc_bwdData
::
desc
(
iMD
,
wMD
,
oMD
);
fc_bwdData
::
primitive_desc
bwdDataPD
=
fc_bwdData
::
primitive_desc
(
bwdDataDesc
,
engine_
,
fwdPD
);
inGrad_
.
reset
(
new
memory
(
memory
::
primitive_desc
(
iMD
,
engine_
),
iDiff
));
CHECK
(
wgtVal_
)
<<
"Should have weight memory"
;
bwdData_
.
reset
(
new
fc_bwdData
(
bwdDataPD
,
*
outGrad_
,
*
wgtVal_
,
*
inGrad_
));
pipelineBwd_
.
push_back
(
*
bwdData_
);
}
void
MKLDNNFcLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
reshape
();
{
REGISTER_TIMER_INFO
(
"mkldnn_FwdTimer"
,
getName
().
c_str
());
// update input data
// since it might be changed if this is after data layer
real
*
iData
=
getInputValue
(
0
)
->
getData
();
inVal_
->
set_data_handle
(
iData
);
// just submit forward pipeline
stream_
->
submit
(
pipelineFwd_
);
}
/* activation */
{
REGISTER_TIMER_INFO
(
"FwActTimer"
,
getName
().
c_str
());
forwardActivation
();
}
}
void
MKLDNNFcLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
/* Do derivation */
{
REGISTER_TIMER_INFO
(
"BpActTimer"
,
getName
().
c_str
());
backwardActivation
();
}
{
REGISTER_TIMER_INFO
(
"mkldnn_bwdTimer"
,
getName
().
c_str
());
resetBwd
();
// update diff
real
*
oDiff
=
getOutputGrad
()
->
getData
();
outGrad_
->
set_data_handle
(
oDiff
);
// just sumbmit backward pipeline
stream_
->
submit
(
pipelineBwd_
);
}
{
REGISTER_TIMER_INFO
(
"WeightUpdate"
,
getName
().
c_str
());
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
if
(
biases_
&&
biases_
->
getWGrad
())
{
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
}
}
// namespace paddle
paddle/gserver/layers/MKLDNNFcLayer.h
0 → 100644
浏览文件 @
2e87d747
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace
paddle
{
/**
* @brief A subclass of MKLDNNLayer fc layer.
*
* The config file api is mkldnn_fc
*/
class
MKLDNNFcLayer
:
public
MKLDNNLayer
{
protected:
// input layer size, can not be change after init
size_t
iLayerSize_
;
// == ic * ih * iw
// if has already init the weight
bool
hasInitedWgt_
;
// if input layer has image size info (ih>1 && iw>1)
bool
hasSpatial_
;
// fc weight and bias
std
::
unique_ptr
<
Weight
>
weight_
;
std
::
unique_ptr
<
Weight
>
biases_
;
public:
explicit
MKLDNNFcLayer
(
const
LayerConfig
&
config
)
:
MKLDNNLayer
(
config
),
hasInitedWgt_
(
false
),
hasSpatial_
(
true
)
{}
~
MKLDNNFcLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
convertWeightsFromPaddle
()
override
;
void
convertWeightsToPaddle
()
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
;
protected:
/**
* reshape the input image sizes
* and reset output buffer size
* and reset mkldnn forward
*/
void
reshape
();
/**
* reset the forward primitve and memory
* only would be called when input size changes
*/
void
resetFwd
();
/**
* reset the backward primitve and memory for mkldnn fc
* only would be called when needed
*/
void
resetBwd
();
};
}
// namespace paddle
paddle/gserver/layers/MKLDNNLayer.h
0 → 100644
浏览文件 @
2e87d747
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "Layer.h"
#include "MKLDNNBase.h"
#include "mkldnn.hpp"
DECLARE_bool
(
use_mkldnn
);
DECLARE_bool
(
use_mkldnn_wgt
);
namespace
paddle
{
class
MKLDNNLayer
;
typedef
std
::
shared_ptr
<
MKLDNNLayer
>
MKLDNNLayerPtr
;
/**
* @brief Base class of MKLDNNlayer.
*
*/
class
MKLDNNLayer
:
public
Layer
{
protected:
// batch size
int
bs_
;
// input image channel, height and width
int
ic_
,
ih_
,
iw_
;
// output image channel, height and width
int
oc_
,
oh_
,
ow_
;
// backward also need reset after reset forward handle
bool
needResetBwd_
;
// mkldnn engine, stream and primivtives
mkldnn
::
engine
engine_
;
std
::
shared_ptr
<
MKLDNNStream
>
stream_
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
fwd_
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
bwdWgt_
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
bwdData_
;
std
::
vector
<
mkldnn
::
primitive
>
pipelineFwd_
;
std
::
vector
<
mkldnn
::
primitive
>
pipelineBwd_
;
// TODO(TJ): change below memory as MKLDNNMatrixPtr type
std
::
shared_ptr
<
mkldnn
::
memory
>
inVal_
;
std
::
shared_ptr
<
mkldnn
::
memory
>
inGrad_
;
std
::
shared_ptr
<
mkldnn
::
memory
>
outVal_
;
std
::
shared_ptr
<
mkldnn
::
memory
>
outGrad_
;
std
::
shared_ptr
<
mkldnn
::
memory
>
wgtVal_
;
std
::
shared_ptr
<
mkldnn
::
memory
>
wgtGrad_
;
std
::
shared_ptr
<
mkldnn
::
memory
>
biasVal_
;
std
::
shared_ptr
<
mkldnn
::
memory
>
biasGrad_
;
public:
explicit
MKLDNNLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
),
bs_
(
0
),
ic_
(
0
),
ih_
(
0
),
iw_
(
0
),
oc_
(
0
),
oh_
(
0
),
ow_
(
0
),
needResetBwd_
(
true
),
engine_
(
mkldnn
::
engine
::
cpu
,
0
),
stream_
(
nullptr
),
fwd_
(
nullptr
),
bwdWgt_
(
nullptr
),
bwdData_
(
nullptr
)
{}
~
MKLDNNLayer
()
{}
virtual
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
Layer
::
init
(
layerMap
,
parameterMap
))
{
return
false
;
}
CHECK
(
FLAGS_use_mkldnn
)
<<
"MkldnnLayers only support use_mkldnn."
<<
"Please set WITH_MKLDNN=ON "
<<
"and set use_mkldnn=True"
;
stream_
.
reset
(
new
MKLDNNStream
());
engine_
=
CPUEngine
::
Instance
().
getEngine
();
// TODO(TJ): deivecId
return
true
;
}
/**
* convert weight from paddle format to mkldnn format
* weight_ will be override
*/
virtual
void
convertWeightsFromPaddle
()
{}
/**
* convert mkldnn weight to paddle format
* weight_ will be override
*/
virtual
void
convertWeightsToPaddle
()
{}
/**
* print info about sizes
*/
virtual
void
printSizeInfo
()
{
VLOG
(
MKLDNN_SIZES
)
<<
getName
()
<<
": bs: "
<<
bs_
<<
", ic: "
<<
ic_
<<
", ih: "
<<
ih_
<<
", iw: "
<<
iw_
<<
", oc: "
<<
oc_
<<
", oh: "
<<
oh_
<<
", ow: "
<<
ow_
;
}
// TODO(TJ): move to MkldnnMatrix
// create memory desc
inline
mkldnn
::
memory
::
desc
createMD
(
mkldnn
::
memory
::
dims
dims
,
mkldnn
::
memory
::
format
fmt
,
mkldnn
::
memory
::
data_type
type
=
mkldnn
::
memory
::
data_type
::
f32
)
{
// TODO(TJ): isFmtSuppoted(fmt)
return
mkldnn
::
memory
::
desc
(
dims
,
type
,
fmt
);
}
};
}
// namespace paddle
paddle/gserver/tests/CMakeLists.txt
浏览文件 @
2e87d747
...
...
@@ -18,6 +18,15 @@ add_unittest_without_exec(test_LayerGrad
add_test
(
NAME test_LayerGrad
COMMAND test_LayerGrad
)
########## test_Mkldnn layers and activations ##########
if
(
WITH_MKLDNN
)
add_unittest_without_exec
(
test_MKLDNN
test_MKLDNN.cpp
MKLDNNTester.cpp
LayerGradUtil.cpp
)
add_test
(
NAME test_MKLDNN COMMAND test_MKLDNN
)
endif
()
################ test_CRFLayerGrad ####################
add_unittest_without_exec
(
test_CRFLayerGrad
test_CRFLayerGrad.cpp
...
...
paddle/gserver/tests/MKLDNNTester.cpp
0 → 100644
浏览文件 @
2e87d747
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
namespace
paddle
{
// init data layer and test layer of both dnn and reference
void
MKLDNNTester
::
reset
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
)
{
const
bool
trans
=
false
;
const
bool
useGpu
=
false
;
// clear
configs_
.
clear
();
layerNames_
.
clear
();
dataLayers_
.
clear
();
datas_
.
clear
();
layerMaps_
.
clear
();
parameters_
.
clear
();
testLayers_
.
clear
();
// resize
configs_
.
resize
(
NUM
);
layerNames_
.
resize
(
NUM
);
dataLayers_
.
resize
(
NUM
);
datas_
.
resize
(
NUM
);
layerMaps_
.
resize
(
NUM
);
parameters_
.
resize
(
NUM
);
testLayers_
.
resize
(
NUM
);
// reset configs and layer names
configs_
[
DNN
]
=
dnn
;
configs_
[
REF
]
=
ref
;
layerNames_
[
DNN
]
=
"mkldnn"
;
// the first is mkldnn layer
layerNames_
[
REF
]
=
"reference"
;
// second is reference layer
// reset others
for
(
size_t
i
=
0
;
i
<
NUM
;
++
i
)
{
configs_
[
i
].
layerConfig
.
set_name
(
layerNames_
[
i
]);
initDataLayer
(
configs_
[
i
],
&
(
dataLayers_
[
i
]),
&
(
datas_
[
i
]),
&
(
layerMaps_
[
i
]),
layerNames_
[
i
],
batchSize
,
trans
,
useGpu
);
initTestLayer
(
configs_
[
i
],
&
(
layerMaps_
[
i
]),
&
(
parameters_
[
i
]),
&
(
testLayers_
[
i
]));
}
dnnLayer_
=
testLayers_
[
DNN
];
refLayer_
=
testLayers_
[
REF
];
EXPECT_EQ
(
dataLayers_
[
DNN
].
size
(),
dataLayers_
[
REF
].
size
());
EXPECT_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
setInputImgSize
();
}
void
MKLDNNTester
::
setInputImgSize
()
{
for
(
size_t
n
=
0
;
n
<
dataLayers_
.
size
();
++
n
)
{
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
n
].
size
();
++
i
)
{
// TODO(TJ): fix me when concat and elewise ready
dataLayers_
[
n
][
i
]
->
getOutput
().
setFrameHeight
(
ih_
);
dataLayers_
[
n
][
i
]
->
getOutput
().
setFrameWidth
(
iw_
);
}
}
}
// init randome parameters of ref, and copy to mkldnn
void
MKLDNNTester
::
randomWgtDatas
()
{
EXPECT_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
for
(
size_t
i
=
0
;
i
<
parameters_
[
REF
].
size
();
++
i
)
{
const
VectorPtr
&
dnnValue
=
parameters_
[
DNN
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
const
VectorPtr
&
refValue
=
parameters_
[
REF
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
parameters_
[
REF
][
i
]
->
randomize
();
dnnValue
->
copyFrom
(
*
refValue
);
VLOG
(
lvl_
)
<<
"Random weight data "
<<
parameters_
[
DNN
][
i
]
->
getName
();
printVector
(
dnnValue
);
}
}
// random botdata of ref layer and copy same to mkldnn
void
MKLDNNTester
::
randomBotDatas
()
{
CHECK_EQ
(
dataLayers_
.
size
(),
NUM
);
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
DNN
].
size
();
++
i
)
{
dataLayers_
[
REF
][
i
]
->
getOutputValue
()
->
randomizeUniform
();
dataLayers_
[
DNN
][
i
]
->
getOutputValue
()
->
copyFrom
(
*
(
dataLayers_
[
REF
][
i
]
->
getOutputValue
()));
VLOG
(
lvl_
)
<<
"Input "
<<
i
<<
" data:"
;
printMatrix
(
dataLayers_
[
REF
][
i
]
->
getOutputValue
());
}
}
void
MKLDNNTester
::
randomTopDiffs
()
{
refLayer_
->
getOutputGrad
()
->
randomizeUniform
();
dnnLayer_
->
getOutputGrad
()
->
copyFrom
(
*
(
refLayer_
->
getOutputGrad
()));
VLOG
(
lvl_
)
<<
"Random dom Backward Input, TopDiff: "
;
printMatrix
(
refLayer_
->
getOutputGrad
());
}
void
MKLDNNTester
::
checkForward
()
{
printTopDatas
();
double
delta
=
compareMatrix
(
testLayers_
[
DNN
]
->
getOutputValue
(),
testLayers_
[
REF
]
->
getOutputValue
());
VLOG
(
MKLDNN_ALL
)
<<
"Check Forward"
;
EXPECT_LE
(
fabs
(
delta
),
eps_
);
}
void
MKLDNNTester
::
checkBackwardData
()
{
// TODO(TJ): uncomment me when batch norm ready
// const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
DNN
].
size
();
++
i
)
{
const
MatrixPtr
&
dnnDiff
=
dataLayers_
[
DNN
][
i
]
->
getOutputGrad
();
const
MatrixPtr
&
refDiff
=
dataLayers_
[
REF
][
i
]
->
getOutputGrad
();
VLOG
(
lvl_
)
<<
"Mkldnn Backward Output BotDiff "
<<
i
;
printMatrix
(
dnnDiff
);
VLOG
(
lvl_
)
<<
"Reference Backward Output BotDiff "
<<
i
;
printMatrix
(
refDiff
);
double
delta
=
compareMatrix
(
dnnDiff
,
refDiff
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
// TODO(TJ): uncomment me when batch norm ready
// if (isBN) {
// // the other two inputs in batch norm are for moving mean and var
// break;
// }
}
}
void
MKLDNNTester
::
checkBackwardWgts
()
{
CHECK_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
vector
<
VectorPtr
>
dnnWgts
;
// used to temply save mkldnn weights
saveWgt
(
parameters_
[
DNN
],
dnnWgts
);
const
MKLDNNLayerPtr
dnnlayer
=
std
::
dynamic_pointer_cast
<
MKLDNNLayer
>
(
dnnLayer_
);
CHECK
(
dnnlayer
);
dnnlayer
->
convertWeightsToPaddle
();
for
(
size_t
i
=
0
;
i
<
parameters_
[
DNN
].
size
();
++
i
)
{
const
VectorPtr
&
dnn
=
parameters_
[
DNN
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
const
VectorPtr
&
ref
=
parameters_
[
REF
][
i
]
->
getBuf
(
PARAMETER_VALUE
);
VLOG
(
lvl_
)
<<
"Mkldnn Output weight "
<<
parameters_
[
DNN
][
i
]
->
getName
();
printVector
(
dnn
);
VLOG
(
lvl_
)
<<
"Reference Output weight "
<<
parameters_
[
REF
][
i
]
->
getName
();
printVector
(
ref
);
double
delta
=
compareVector
(
dnn
,
ref
);
EXPECT_LE
(
fabs
(
delta
),
eps_
);
}
VLOG
(
MKLDNN_ALL
)
<<
"Restore dnn weights before comapre"
;
restoreWgt
(
dnnWgts
,
parameters_
[
DNN
]);
}
void
MKLDNNTester
::
saveWgt
(
const
vector
<
ParameterPtr
>&
from
,
vector
<
VectorPtr
>&
to
)
{
const
bool
useGpu
=
false
;
to
.
resize
(
from
.
size
());
for
(
size_t
i
=
0
;
i
<
to
.
size
();
++
i
)
{
const
VectorPtr
&
wgt
=
from
[
i
]
->
getBuf
(
PARAMETER_VALUE
);
to
[
i
]
=
Vector
::
create
(
wgt
->
getSize
(),
useGpu
);
to
[
i
]
->
copyFrom
(
*
wgt
);
}
}
void
MKLDNNTester
::
restoreWgt
(
const
vector
<
VectorPtr
>&
from
,
vector
<
ParameterPtr
>&
to
)
{
CHECK_EQ
(
from
.
size
(),
to
.
size
());
for
(
size_t
i
=
0
;
i
<
from
.
size
();
++
i
)
{
const
VectorPtr
&
wgt
=
to
[
i
]
->
getBuf
(
PARAMETER_VALUE
);
wgt
->
copyFrom
(
*
from
[
i
]);
}
}
// clear parameters grad
void
MKLDNNTester
::
clearWgtDiffs
()
{
for
(
size_t
n
=
0
;
n
<
parameters_
.
size
();
++
n
)
{
for
(
size_t
i
=
0
;
i
<
parameters_
[
n
].
size
();
++
i
)
{
const
VectorPtr
&
grad
=
parameters_
[
n
][
i
]
->
getBuf
(
PARAMETER_GRADIENT
);
if
(
grad
)
{
grad
->
zeroMem
();
}
}
}
}
void
MKLDNNTester
::
clearBotDiffs
()
{
// dnn and ref
for
(
size_t
n
=
0
;
n
<
dataLayers_
.
size
();
++
n
)
{
// all inputs layers
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
n
].
size
();
++
i
)
{
dataLayers_
[
n
][
i
]
->
getOutputGrad
()
->
zeroMem
();
}
}
}
void
MKLDNNTester
::
clearBotDiffs
(
int
n
)
{
CHECK_LT
(
n
,
NUM
);
// all inputs layers
for
(
size_t
i
=
0
;
i
<
dataLayers_
[
n
].
size
();
++
i
)
{
dataLayers_
[
n
][
i
]
->
getOutputGrad
()
->
zeroMem
();
}
}
void
MKLDNNTester
::
clearTopDatas
()
{
for
(
size_t
i
=
0
;
i
<
testLayers_
.
size
();
++
i
)
{
testLayers_
[
i
]
->
getOutputValue
()
->
zeroMem
();
}
}
void
MKLDNNTester
::
printTopDatas
()
{
if
(
!
log_
)
{
return
;
}
for
(
int
n
=
0
;
n
<
NUM
;
++
n
)
{
VLOG
(
lvl_
)
<<
testLayers_
[
n
]
->
getType
()
<<
" forward output TopData: "
;
printMatrix
(
testLayers_
[
n
]
->
getOutputValue
());
}
}
void
MKLDNNTester
::
printMatrix
(
const
MatrixPtr
&
m
)
{
if
(
!
log_
)
{
return
;
}
std
::
ostringstream
ostr
;
m
->
print
(
ostr
);
VLOG
(
lvl_
)
<<
std
::
endl
<<
ostr
.
str
();
}
void
MKLDNNTester
::
printVector
(
const
VectorPtr
&
v
)
{
if
(
!
log_
)
{
return
;
}
std
::
ostringstream
ostr
;
v
->
print
(
ostr
,
v
->
getSize
());
VLOG
(
lvl_
)
<<
std
::
endl
<<
ostr
.
str
();
}
double
MKLDNNTester
::
getDelta
(
const
real
*
d1
,
const
real
*
d2
,
size_t
len
,
const
float
failRate
,
const
float
thres
)
{
double
delta
=
0
,
sum
=
0
;
int
failCnt
=
0
;
const
double
eps
=
1e-5
;
double
maxOut
=
0
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
{
double
ref
=
fabs
(
d2
[
i
]);
double
diff
=
fabs
(
d1
[
i
]
-
d2
[
i
]);
delta
+=
diff
;
sum
+=
ref
;
if
(
ref
>
eps
&&
fabs
(
d1
[
i
])
>
eps
&&
diff
/
ref
>
thres
)
{
maxOut
=
std
::
max
(
maxOut
,
diff
/
ref
);
failCnt
++
;
}
}
EXPECT_TRUE
(
std
::
isnormal
(
sum
));
EXPECT_FALSE
(
std
::
isinf
(
sum
));
EXPECT_FALSE
(
std
::
isnan
(
delta
));
VLOG
(
MKLDNN_ALL
)
<<
"reference avg data: "
<<
sum
/
len
<<
", delta: "
<<
delta
/
sum
<<
", failCnt:"
<<
failCnt
;
return
(
failCnt
/
(
float
)
len
)
>
failRate
?
maxOut
:
delta
/
sum
;
}
double
MKLDNNTester
::
compareMatrix
(
const
MatrixPtr
&
m1
,
const
MatrixPtr
&
m2
)
{
CHECK_EQ
(
m1
->
getElementCnt
(),
m2
->
getElementCnt
());
return
getDelta
(
m1
->
getData
(),
m2
->
getData
(),
m1
->
getElementCnt
());
}
double
MKLDNNTester
::
compareVector
(
const
VectorPtr
&
v1
,
const
VectorPtr
&
v2
)
{
CHECK_EQ
(
v1
->
getSize
(),
v2
->
getSize
());
return
getDelta
(
v1
->
getData
(),
v2
->
getData
(),
v1
->
getSize
());
}
void
MKLDNNTester
::
runOnce
()
{
// test forward
randomBotDatas
();
dnnLayer_
->
forward
(
PASS_TRAIN
);
refLayer_
->
forward
(
PASS_TRAIN
);
checkForward
();
// test backward
randomTopDiffs
();
dnnLayer_
->
backward
(
nullptr
);
refLayer_
->
backward
(
nullptr
);
checkBackwardData
();
checkBackwardWgts
();
// clear buffers
// ref code will addto the diff, dnn code will writeto it
// and clearTopDatas() and clearWgtDiffs() should be coverd by test layers
clearBotDiffs
(
REF
);
}
void
MKLDNNTester
::
run
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
,
size_t
inputImgH
,
size_t
inputImgW
,
size_t
iter
,
float
epsilon
,
bool
log
,
int
level
)
{
VLOG
(
MKLDNN_TESTS
)
<<
"Test MKLDNN functionality: "
<<
dnn
.
layerConfig
.
type
()
<<
" vs "
<<
ref
.
layerConfig
.
type
();
ih_
=
inputImgH
;
iw_
=
inputImgW
;
iter_
=
iter
;
eps_
=
epsilon
;
log_
=
log
;
lvl_
=
level
;
// Firstly test FLAGS_use_mkldnn_wgt = false
FLAGS_use_mkldnn_wgt
=
false
;
// reset and run once
reset
(
dnn
,
ref
,
batchSize
);
randomWgtDatas
();
clearWgtDiffs
();
clearBotDiffs
();
for
(
size_t
i
=
0
;
i
<
iter_
;
++
i
)
{
VLOG
(
MKLDNN_TESTS
)
<<
"Check Iteration "
<<
i
;
runOnce
();
}
// Then test FLAGS_use_mkldnn_wgt = true
FLAGS_use_mkldnn_wgt
=
true
;
// after run once the mkldnn weight has been stored in dnnlayer
// then save the weights and restart again
vector
<
VectorPtr
>
dnnWgts
,
refWgts
;
CHECK_EQ
(
parameters_
[
DNN
].
size
(),
parameters_
[
REF
].
size
());
saveWgt
(
parameters_
[
DNN
],
dnnWgts
);
saveWgt
(
parameters_
[
REF
],
refWgts
);
// restart again with flag true
reset
(
dnn
,
ref
,
batchSize
);
// restore wgt
restoreWgt
(
dnnWgts
,
parameters_
[
DNN
]);
restoreWgt
(
refWgts
,
parameters_
[
REF
]);
clearWgtDiffs
();
clearBotDiffs
();
for
(
size_t
i
=
0
;
i
<
iter_
;
++
i
)
{
VLOG
(
MKLDNN_TESTS
)
<<
"Check Iteration "
<<
i
;
runOnce
();
}
}
}
// namespace paddle
paddle/gserver/tests/MKLDNNTester.h
0 → 100644
浏览文件 @
2e87d747
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "LayerGradUtil.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
namespace
paddle
{
/**
* @brief test the functionality of Mkldnnlayers
* refer to paddle original function
*/
class
MKLDNNTester
{
enum
{
DNN
=
0
,
// MKLDNN layer
REF
=
1
,
// Reference layer
NUM
=
2
,
// Number of total
};
protected:
std
::
vector
<
TestConfig
>
configs_
;
vector
<
string
>
layerNames_
;
vector
<
vector
<
DataLayerPtr
>>
dataLayers_
;
vector
<
vector
<
Argument
>>
datas_
;
vector
<
LayerMap
>
layerMaps_
;
vector
<
vector
<
ParameterPtr
>>
parameters_
;
vector
<
LayerPtr
>
testLayers_
;
LayerPtr
dnnLayer_
,
refLayer_
;
/// run some iterations, all the result should pass
size_t
iter_
;
/// whether to print out the details
bool
log_
;
/// vlog level to print the matrix details datas
int
lvl_
;
/// epsilon
float
eps_
;
/// input image size, default 1
size_t
ih_
,
iw_
;
public:
explicit
MKLDNNTester
(
size_t
iter
=
3
,
float
epsilon
=
1e-4
)
{
iter_
=
iter
;
eps_
=
epsilon
;
log_
=
false
;
lvl_
=
MKLDNN_ALL
;
}
~
MKLDNNTester
()
{}
public:
void
run
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
,
size_t
inputImgH
=
1
,
size_t
inputImgW
=
1
,
size_t
iter
=
3
,
float
epsilon
=
1e-4
,
bool
log
=
false
,
int
level
=
MKLDNN_ALL
);
void
setLogLevel
(
int
lvl
)
{
lvl_
=
lvl
;
}
private:
void
reset
(
const
TestConfig
&
dnn
,
const
TestConfig
&
ref
,
size_t
batchSize
);
void
setInputImgSize
();
void
runOnce
();
void
randomWgtDatas
();
void
randomBotDatas
();
void
randomTopDiffs
();
void
checkForward
();
void
checkBackwardData
();
void
checkBackwardWgts
();
void
clearWgtDiffs
();
void
clearBotDiffs
();
void
clearBotDiffs
(
int
n
);
// clear specific layer
void
clearTopDatas
();
void
printTopDatas
();
void
printMatrix
(
const
MatrixPtr
&
m
);
void
printVector
(
const
VectorPtr
&
v
);
void
saveWgt
(
const
vector
<
ParameterPtr
>&
from
,
vector
<
VectorPtr
>&
to
);
void
restoreWgt
(
const
vector
<
VectorPtr
>&
from
,
vector
<
ParameterPtr
>&
to
);
double
compareMatrix
(
const
MatrixPtr
&
m1
,
const
MatrixPtr
&
m2
);
double
compareVector
(
const
VectorPtr
&
v1
,
const
VectorPtr
&
v2
);
/**
* Get delta percent
* if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the
* max(diff/ref)
* else return sum(abs(a-b)) / sum(abs(b))
* The return value should smaller than eps when passing.
*/
double
getDelta
(
const
real
*
d1
,
const
real
*
d2
,
size_t
len
,
const
float
failRate
=
1e-3
,
const
float
thres
=
0.1
);
};
}
// namespace paddle
paddle/gserver/tests/test_MKLDNN.cpp
0 → 100644
浏览文件 @
2e87d747
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "MKLDNNTester.h"
#include "ModelConfig.pb.h"
using
namespace
paddle
;
// NOLINT
DECLARE_bool
(
thread_local_rand_use_global_seed
);
DECLARE_bool
(
use_gpu
);
DECLARE_bool
(
use_mkldnn
);
struct
testFCDesc
{
int
bs
;
int
ic
;
int
oc
;
int
ih
,
iw
;
// oh == ow == 1
};
void
testFcLayer
(
const
testFCDesc
&
pm
)
{
const
std
::
string
compareTypes
[]
=
{
"mkldnn_fc"
,
"fc"
};
TestConfig
cfg
;
cfg
.
layerConfig
.
set_type
(
compareTypes
[
0
]);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
);
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
/* size of input layer= */
size_t
(
pm
.
ic
*
pm
.
ih
*
pm
.
iw
),
/* size of weight= */
size_t
(
pm
.
oc
*
pm
.
ic
*
pm
.
ih
*
pm
.
iw
)});
cfg
.
layerConfig
.
add_inputs
();
MKLDNNTester
tester
;
for
(
auto
biasSize
:
{
pm
.
oc
,
0
})
{
cfg
.
biasSize
=
biasSize
;
TestConfig
ref
=
cfg
;
ref
.
layerConfig
.
set_type
(
compareTypes
[
1
]);
for
(
auto
bs
:
{
pm
.
bs
,
1
})
{
tester
.
run
(
cfg
,
ref
,
bs
,
pm
.
ih
,
pm
.
iw
);
}
}
}
TEST
(
MKLDNNLayer
,
FcLayer
)
{
testFcLayer
({
/*bs*/
2
,
/*ic*/
2
,
/*oc*/
3
,
/*ih*/
1
,
/*iw*/
1
});
testFcLayer
({
/*bs*/
3
,
/*ic*/
7
,
/*oc*/
19
,
/*ih*/
1
,
/*iw*/
1
});
testFcLayer
({
/*bs*/
8
,
/*ic*/
16
,
/*oc*/
32
,
/*ih*/
13
,
/*iw*/
13
});
testFcLayer
({
/*bs*/
4
,
/*ic*/
12
,
/*oc*/
18
,
/*ih*/
13
,
/*iw*/
11
});
testFcLayer
({
/*bs*/
2
,
/*ic*/
64
,
/*oc*/
32
,
/*ih*/
16
,
/*iw*/
16
});
testFcLayer
({
/*bs*/
15
,
/*ic*/
3
,
/*oc*/
6
,
/*ih*/
16
,
/*iw*/
16
});
}
// TODO(TJ): add branch test
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
FLAGS_use_gpu
=
false
;
FLAGS_use_mkldnn
=
true
;
initMain
(
argc
,
argv
);
FLAGS_thread_local_rand_use_global_seed
=
true
;
srand
(
1
);
return
RUN_ALL_TESTS
();
}
paddle/trainer/TrainerConfigHelper.cpp
浏览文件 @
2e87d747
...
...
@@ -28,6 +28,8 @@ DECLARE_bool(with_cost);
DECLARE_bool
(
with_gpu
);
DECLARE_bool
(
parallel_nn
);
DECLARE_string
(
config_args
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_bool
(
use_mkldnn_wgt
);
const
char
*
kConfigParserModuleName
=
"paddle.trainer.config_parser"
;
const
char
*
kConfigParserFuncName
=
"parse_config_and_serialize"
;
...
...
@@ -44,6 +46,8 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath)
configArgs
<<
"trainer_id="
<<
FLAGS_trainer_id
<<
",local="
<<
FLAGS_local
<<
",with_cost="
<<
FLAGS_with_cost
<<
",use_gpu="
<<
FLAGS_use_gpu
<<
",parallel_nn="
<<
FLAGS_parallel_nn
<<
",use_mkldnn="
<<
FLAGS_use_mkldnn
<<
",use_mkldnn_wgt="
<<
FLAGS_use_mkldnn_wgt
<<
",cudnn_version="
<<
hl_get_cudnn_lib_version
();
if
(
!
FLAGS_config_args
.
empty
())
{
configArgs
<<
","
<<
FLAGS_config_args
;
...
...
paddle/utils/Flags.cpp
浏览文件 @
2e87d747
...
...
@@ -20,6 +20,14 @@ DEFINE_bool(use_gpu, false, "Only support CPU training");
DEFINE_bool
(
use_gpu
,
true
,
"Whether to use GPU for training"
);
#endif
#ifdef PADDLE_USE_MKLDNN
// TODO(TJ): change to true when MKLDNN layers support multi-inputs
DEFINE_bool
(
use_mkldnn
,
false
,
"Default still keep use CPU training"
);
#else
DEFINE_bool
(
use_mkldnn
,
false
,
"Only support CPU training"
);
#endif
DEFINE_bool
(
use_mkldnn_wgt
,
false
,
"Init weight from CPU weight"
);
DEFINE_bool
(
parallel_nn
,
false
,
"Whether to use multi-threads to calculate one neural network."
...
...
paddle/utils/Flags.h
浏览文件 @
2e87d747
...
...
@@ -40,3 +40,5 @@ DECLARE_bool(show_layer_stat);
DECLARE_string
(
predict_file
);
DECLARE_bool
(
prev_batch_state
);
DECLARE_string
(
init_model_path
);
DECLARE_bool
(
use_mkldnn
);
DECLARE_bool
(
use_mkldnn_wgt
);
python/paddle/trainer/config_parser.py
浏览文件 @
2e87d747
...
...
@@ -1604,6 +1604,8 @@ class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
@
config_layer
(
'fc'
)
class
FCLayer
(
LayerBase
):
layer_type
=
'fc'
def
__init__
(
self
,
name
,
size
,
...
...
@@ -1611,14 +1613,27 @@ class FCLayer(LayerBase):
bias
=
True
,
error_clipping_threshold
=
None
,
**
xargs
):
super
(
FCLayer
,
self
).
__init__
(
name
,
'fc'
,
size
,
inputs
=
inputs
,
**
xargs
)
use_mkldnn
=
bool
(
int
(
g_command_config_args
.
get
(
"use_mkldnn"
,
0
)))
use_mkldnn_wgt
=
bool
(
int
(
g_command_config_args
.
get
(
"use_mkldnn_wgt"
,
0
)))
if
use_mkldnn
:
self
.
layer_type
=
'mkldnn_fc'
config_assert
(
len
(
inputs
)
==
1
,
"MkldnnFCLayer support one and only one input!"
)
super
(
FCLayer
,
self
).
__init__
(
name
,
self
.
layer_type
,
size
,
inputs
=
inputs
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
psize
=
self
.
config
.
size
*
input_layer
.
size
dims
=
[
input_layer
.
size
,
self
.
config
.
size
]
format
=
self
.
inputs
[
input_index
].
format
sparse
=
format
==
"csr"
or
format
==
"csc"
if
use_mkldnn
:
config_assert
(
not
sparse
,
"MkldnnFCLayer do not support sparse format yet"
)
if
use_mkldnn_wgt
:
dims
=
[
self
.
config
.
size
,
input_layer
.
size
]
if
sparse
:
psize
=
self
.
inputs
[
input_index
].
nnz
else
:
...
...
@@ -1631,6 +1646,11 @@ class FCLayer(LayerBase):
self
.
config
.
error_clipping_threshold
=
error_clipping_threshold
@
config_layer
(
'mkldnn_fc'
)
class
MkldnnFcLayer
(
FCLayer
):
layer_type
=
'mkldnn_fc'
@
config_layer
(
'selective_fc'
)
class
SelectiveFCLayer
(
LayerBase
):
def
__init__
(
self
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录