Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2e417b60
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2e417b60
编写于
10月 25, 2017
作者:
Z
zchen0211
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
batch norm
上级
6c0b3836
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
121 addition
and
22 deletion
+121
-22
python/paddle/v2/framework/tests/test_batch_norm_op.py
python/paddle/v2/framework/tests/test_batch_norm_op.py
+121
-22
未找到文件。
python/paddle/v2/framework/tests/test_batch_norm_op.py
浏览文件 @
2e417b60
...
...
@@ -6,16 +6,36 @@ from paddle.v2.framework.op import Operator
def
_reference_training
(
x
,
scale
,
offset
,
epsilon
,
data_format
):
if
data_format
!=
"NHWC"
:
raise
ValueError
(
"data_format must be NHWC, got %s."
%
data_format
)
x_square
=
x
*
x
x_square_sum
=
np
.
sum
(
x_square
,
(
0
,
1
,
2
))
x_sum
=
np
.
sum
(
x
,
axis
=
(
0
,
1
,
2
))
element_count
=
np
.
size
(
x
)
/
int
(
np
.
shape
(
x
)[
-
1
])
mean
=
x_sum
/
element_count
var
=
x_square_sum
/
element_count
-
mean
*
mean
normalized
=
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
)
return
(
normalized
*
scale
+
offset
),
mean
,
var
if
data_format
==
"NCHW"
:
n
,
c
,
h
,
w
=
x
.
shape
x_square
=
x
*
x
x_square_sum
=
np
.
sum
(
x_square
,
(
0
,
2
,
3
))
x_sum
=
np
.
sum
(
x
,
axis
=
(
0
,
2
,
3
))
element_count
=
np
.
size
(
x
)
/
int
(
np
.
shape
(
x
)[
1
])
mean
=
x_sum
/
element_count
var
=
x_square_sum
/
element_count
-
mean
*
mean
mean_tile
=
np
.
reshape
(
mean
,
(
1
,
c
,
1
,
1
))
mean_tile
=
np
.
tile
(
mean_tile
,
(
n
,
1
,
h
,
w
))
var_tile
=
np
.
reshape
(
var
,
(
1
,
c
,
1
,
1
))
var_tile
=
np
.
tile
(
var_tile
,
(
n
,
1
,
h
,
w
))
normalized
=
(
x
-
mean_tile
)
/
np
.
sqrt
(
var_tile
+
epsilon
)
scale_tile
=
np
.
reshape
(
scale
,
(
1
,
c
,
1
,
1
))
scale_tile
=
np
.
tile
(
scale_tile
,
(
n
,
1
,
h
,
w
))
offset_tile
=
np
.
reshape
(
offset
,
(
1
,
c
,
1
,
1
))
offset_tile
=
np
.
reshape
(
offset_tile
,
(
1
,
c
,
1
,
1
))
y
=
normalized
*
scale_tile
+
offset_tile
return
y
,
mean
,
var
elif
data_format
==
"NHWC"
:
x_square
=
x
*
x
x_square_sum
=
np
.
sum
(
x_square
,
(
0
,
1
,
2
))
x_sum
=
np
.
sum
(
x
,
axis
=
(
0
,
1
,
2
))
element_count
=
np
.
size
(
x
)
/
int
(
np
.
shape
(
x
)[
-
1
])
mean
=
x_sum
/
element_count
var
=
x_square_sum
/
element_count
-
mean
*
mean
normalized
=
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
)
return
(
normalized
*
scale
+
offset
),
mean
,
var
else
:
raise
ValueError
(
"Unknown data order."
)
def
_reference_grad
(
x
,
grad_y
,
scale
,
mean
,
var
,
epsilon
,
data_format
):
...
...
@@ -28,8 +48,13 @@ def _reference_grad(x, grad_y, scale, mean, var, epsilon, data_format):
# grad_x =
# 1/N * scale * rsqrt(var + epsilon) * (N * grad_y - sum(grad_y) -
# (x - mean) * sum(grad_y * (x - mean)) / (var + epsilon))
if
data_format
!=
"NHWC"
:
raise
ValueError
(
"data_format must be NHWC, got %s."
%
data_format
)
# transfer from (N, C, H, W) to (N, H, W, C) to simplify computation
if
data_format
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
2
,
3
,
1
))
grad_y
=
np
.
transpose
(
grad_y
,
(
0
,
2
,
3
,
1
))
# raise ValueError("data_format must be NHWC, got %s." % data_format)
grad_x
=
scale
*
(
grad_y
-
np
.
mean
(
grad_y
,
axis
=
(
0
,
1
,
2
))
-
(
x
-
mean
)
*
np
.
mean
(
grad_y
*
(
x
-
mean
),
axis
=
(
0
,
1
,
2
))
/
...
...
@@ -37,6 +62,12 @@ def _reference_grad(x, grad_y, scale, mean, var, epsilon, data_format):
grad_scale
=
np
.
sum
(
grad_y
*
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
),
axis
=
(
0
,
1
,
2
))
grad_offset
=
np
.
sum
(
grad_y
,
axis
=
(
0
,
1
,
2
))
# transfer back to N, C, H, W
if
data_format
==
"NCHW"
:
grad_x
=
np
.
transpose
(
grad_x
,
(
0
,
3
,
1
,
2
))
x
=
np
.
transpose
(
x
,
(
0
,
3
,
1
,
2
))
grad_y
=
np
.
transpose
(
grad_y
,
(
0
,
3
,
1
,
2
))
return
grad_x
,
grad_scale
,
grad_offset
...
...
@@ -72,39 +103,104 @@ class TestBatchNormOp(OpTest):
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
test_forward_backward
(
self
):
# attr
def
test_python
(
self
):
data_format
=
"NHWC"
epsilon
=
0.00001
momentum
=
0.9
# N, H, W, C: 2, 3, 4, 2
channel_num
=
2
x_shape
=
[
2
,
3
,
4
,
channel_num
]
scale_shape
=
[
channel_num
]
# input
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
mean
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
# run forward
y_out
,
saved_mean
,
var_ref
=
_reference_training
(
x_val
,
scale_val
,
bias_val
,
epsilon
,
"NHWC"
)
#
mean_out
=
saved_mean
*
(
1.
-
momentum
)
+
momentum
*
mean
variance_out
=
var_ref
*
(
1.
-
momentum
)
+
momentum
*
variance
saved_variance
=
1.
/
np
.
sqrt
(
var_ref
+
epsilon
)
# running N, C, H, W case
# should produce the same results
x_shape2
=
[
2
,
channel_num
,
3
,
4
]
x_val2
=
np
.
transpose
(
x_val
,
(
0
,
3
,
1
,
2
))
y_out2
,
saved_mean2
,
var_ref2
=
_reference_training
(
x_val2
,
scale_val
,
bias_val
,
epsilon
,
"NCHW"
)
self
.
__assert_close
(
saved_mean
,
saved_mean2
,
"batch mean"
)
self
.
__assert_close
(
var_ref
,
var_ref2
,
"batch variance"
)
# transfer (N, C, H, W) back to (N, H, W, C)
y_out2_trans
=
np
.
transpose
(
y_out2
,
(
0
,
2
,
3
,
1
))
self
.
__assert_close
(
y_out
,
y_out2_trans
,
"batch variance"
)
print
'python: NHWC, NCHW, forward checking passed'
# test backward now
# NHWC
y_grad
=
np
.
ones
(
x_shape
).
astype
(
np
.
float32
)
x_grad_ref
,
scale_grad_ref
,
bias_grad_ref
=
_reference_grad
(
x_val
,
y_grad
,
scale_val
,
saved_mean
,
var_ref
,
epsilon
,
"NHWC"
)
# NCHW
y_grad2
=
np
.
ones
(
x_shape2
).
astype
(
np
.
float32
)
x_grad_ref2
,
scale_grad_ref2
,
bias_grad_ref2
=
_reference_grad
(
x_val2
,
y_grad2
,
scale_val
,
saved_mean2
,
var_ref2
,
epsilon
,
"NCHW"
)
self
.
__assert_close
(
scale_grad_ref
,
scale_grad_ref2
,
"scale gradient"
)
self
.
__assert_close
(
bias_grad_ref
,
bias_grad_ref2
,
"bias gradient"
)
x_grad_transpose
=
np
.
transpose
(
x_grad_ref2
,
(
0
,
2
,
3
,
1
))
self
.
__assert_close
(
x_grad_ref
,
x_grad_transpose
,
"x gradient"
)
print
'python: NHWC, NCHW, backward checking passed'
def
test_forward_backward
(
self
):
# attr
data_format
=
"NCHW"
epsilon
=
0.00001
momentum
=
0.9
# N, H, W, C: 2, 3, 4, 2
n
,
h
,
w
,
c
=
2
,
3
,
4
,
2
if
data_format
==
"NHWC"
:
x_shape
=
[
n
,
h
,
w
,
c
]
elif
data_format
==
"NCHW"
:
x_shape
=
[
n
,
c
,
h
,
w
]
else
:
raise
ValueError
(
"Unknown data type."
)
scale_shape
=
[
c
]
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
mean
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
# run forward
y_out
,
saved_mean
,
var_ref
=
_reference_training
(
x_val
,
scale_val
,
bias_val
,
epsilon
,
data_format
)
#
run backward
mean_out
=
saved_mean
*
(
1
-
momentum
)
variance_out
=
var_ref
*
(
1
-
momentum
)
saved_variance
=
1
/
np
.
sqrt
(
var_ref
+
epsilon
)
#
update moving mean and variance
mean_out
=
saved_mean
*
(
1
.
-
momentum
)
+
momentum
*
mean
variance_out
=
var_ref
*
(
1
.
-
momentum
)
+
momentum
*
variance
saved_variance
=
1
.
/
np
.
sqrt
(
var_ref
+
epsilon
)
# for gradient test
y_grad
=
np
.
ones
(
x_shape
).
astype
(
np
.
float32
)
x_grad_ref
,
scale_grad_ref
,
bias_grad_ref
=
_reference_grad
(
x_val
,
y_grad
,
scale_val
,
saved_mean
,
var_ref
,
epsilon
,
data_format
)
def
test_with_place
(
place
):
def
test_with_place
(
place
,
tensor_format
=
data_format
):
scope
=
core
.
Scope
()
# create input
...
...
@@ -142,7 +238,7 @@ class TestBatchNormOp(OpTest):
SavedVariance
=
"saved_variance"
,
# attrs
is_test
=
False
,
tensor_format
=
data
_format
,
tensor_format
=
tensor
_format
,
momentum
=
momentum
,
epsilon
=
epsilon
)
...
...
@@ -162,6 +258,7 @@ class TestBatchNormOp(OpTest):
atol
=
1e-4
self
.
__assert_close
(
variance_out_tensor
,
variance_out
,
"variance_out"
,
atol
)
print
"op test forward passed: "
,
tensor_format
# run backward
batch_norm_op_grad
=
get_backward_op
(
scope
,
batch_norm_op
,
set
())
...
...
@@ -185,12 +282,14 @@ class TestBatchNormOp(OpTest):
self
.
__assert_close
(
x_grad_tensor
,
x_grad_ref
,
"x_grad"
)
self
.
__assert_close
(
scale_grad_tensor
,
scale_grad_ref
,
"scale_grad"
)
self
.
__assert_close
(
bias_grad_tensor
,
bias_grad_ref
,
"bias_grad"
)
print
"op test backward passed: "
,
tensor_format
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compile_gpu
()
and
core
.
op_support_gpu
(
"batch_norm"
):
places
.
append
(
core
.
GPUPlace
(
0
))
for
place
in
places
:
test_with_place
(
place
)
print
"test forward passed"
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录