Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2de7f3cf
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2de7f3cf
编写于
4月 15, 2019
作者:
H
Hongyu Liu
提交者:
GitHub
4月 15, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16799 from phlrain/sigmoid_corss_entropy_support_high_rank
supprt high rank
上级
a67fbffd
a3e52381
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
127 addition
and
26 deletion
+127
-26
paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.cc
...e/fluid/operators/sigmoid_cross_entropy_with_logits_op.cc
+34
-26
python/paddle/fluid/tests/unittests/test_sigmoid_cross_entropy_with_logits_op.py
...ts/unittests/test_sigmoid_cross_entropy_with_logits_op.py
+93
-0
未找到文件。
paddle/fluid/operators/sigmoid_cross_entropy_with_logits_op.cc
浏览文件 @
2de7f3cf
...
@@ -34,15 +34,22 @@ class SigmoidCrossEntropyWithLogitsOp : public framework::OperatorWithKernel {
...
@@ -34,15 +34,22 @@ class SigmoidCrossEntropyWithLogitsOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
labels_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
labels_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
labels_dims
.
size
(),
2
,
int
rank
=
x_dims
.
size
();
"Input(Label)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
rank
,
labels_dims
.
size
(),
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
labels_dims
[
0
],
"Input(X) and Input(Label) shall have the same rank."
);
"The 1st dimension of Input(X) and Input(Label) should "
bool
check
=
true
;
"be equal."
);
if
((
!
ctx
->
IsRuntime
())
&&
(
framework
::
product
(
x_dims
)
<=
0
||
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
labels_dims
[
1
],
framework
::
product
(
labels_dims
)
<=
0
))
{
"The 2nd dimension of Input(X) and Input(Label) should "
check
=
false
;
"be equal."
);
}
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
),
framework
::
slice_ddim
(
labels_dims
,
0
,
rank
),
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension."
);
}
ctx
->
ShareDim
(
"X"
,
/*->*/
"Out"
);
ctx
->
ShareDim
(
"X"
,
/*->*/
"Out"
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
...
@@ -65,23 +72,24 @@ class SigmoidCrossEntropyWithLogitsGradOp
...
@@ -65,23 +72,24 @@ class SigmoidCrossEntropyWithLogitsGradOp
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
labels_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
labels_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
dout_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
auto
dout_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
labels_dims
.
size
(),
2
,
int
rank
=
x_dims
.
size
();
"Input(Label)'s rank should be 2."
);
bool
check
=
true
;
PADDLE_ENFORCE_EQ
(
dout_dims
.
size
(),
2
,
if
((
!
ctx
->
IsRuntime
())
&&
(
framework
::
product
(
x_dims
)
<=
0
||
"Input(Out@Grad)'s rank should be 2."
);
framework
::
product
(
labels_dims
)
<=
0
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
labels_dims
[
0
],
check
=
false
;
"The 1st dimension of Input(X) and Input(Label) should "
}
"be equal."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
labels_dims
[
1
],
if
(
check
)
{
"The 2nd dimension of Input(X) and Input(Label) should "
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
),
"be equal."
);
framework
::
slice_ddim
(
labels_dims
,
0
,
rank
),
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
dout_dims
[
0
],
"Input(X) and Input(Label) shall have the same shape."
);
"The 1st dimension of Input(X) and Input(Out@Grad) "
"should be equal."
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
dout_dims
[
1
],
framework
::
slice_ddim
(
x_dims
,
0
,
rank
),
"The 2nd dimension of Input(X) and Input(Out@Grad) "
framework
::
slice_ddim
(
dout_dims
,
0
,
rank
),
"should be equal."
);
"Input(X) and Input(Out@Grad) shall have the same shape."
);
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
}
}
...
...
python/paddle/fluid/tests/unittests/test_sigmoid_cross_entropy_with_logits_op.py
浏览文件 @
2de7f3cf
...
@@ -149,5 +149,98 @@ class TestSigmoidCrossEntropyWithNorm(OpTest):
...
@@ -149,5 +149,98 @@ class TestSigmoidCrossEntropyWithNorm(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSigmoidCrossEntropyWithLogitsOp5
(
OpTest
):
"""Test sigmoid_cross_entropy_with_logit_op with probabalistic label
"""
def
setUp
(
self
):
self
.
op_type
=
"sigmoid_cross_entropy_with_logits"
batch_size
=
[
10
,
10
]
num_classes
=
20
self
.
inputs
=
{
'X'
:
logit
(
np
.
random
.
uniform
(
0
,
1
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)),
'Label'
:
np
.
random
.
uniform
(
0
,
1
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X
=
expit
(
self
.
inputs
[
'X'
])
term1
=
self
.
inputs
[
'Label'
]
*
np
.
log
(
sigmoid_X
)
term2
=
(
1
-
self
.
inputs
[
'Label'
])
*
np
.
log
(
1
-
sigmoid_X
)
self
.
outputs
=
{
'Out'
:
-
term1
-
term2
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSigmoidCrossEntropyWithNorm2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"sigmoid_cross_entropy_with_logits"
batch_size
=
[
10
,
10
]
num_classes
=
20
ignore_index
=
-
1
self
.
inputs
=
{
'X'
:
logit
(
np
.
random
.
uniform
(
0
,
1
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)),
'Label'
:
np
.
random
.
randint
(
-
1
,
2
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)
}
self
.
attrs
=
{
'ignore_index'
:
ignore_index
,
'normalize'
:
True
}
sigmoid_X
=
expit
(
self
.
inputs
[
'X'
])
term1
=
self
.
inputs
[
'Label'
]
*
np
.
log
(
sigmoid_X
)
term2
=
(
1
-
self
.
inputs
[
'Label'
])
*
np
.
log
(
1
-
sigmoid_X
)
out
=
-
term1
-
term2
out
[
np
.
where
(
self
.
inputs
[
'Label'
]
==
ignore_index
)]
=
0
if
self
.
attrs
[
'normalize'
]:
out
=
out
/
float
(
np
.
where
(
self
.
inputs
[
'Label'
]
!=
ignore_index
)[
0
].
size
)
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSigmoidCrossEntropyWithLogitsOp6
(
OpTest
):
"""Test sigmoid_cross_entropy_with_logit_op with binary label
"""
def
setUp
(
self
):
self
.
op_type
=
"sigmoid_cross_entropy_with_logits"
batch_size
=
[
10
,
10
]
num_classes
=
20
self
.
inputs
=
{
'X'
:
logit
(
np
.
random
.
uniform
(
0
,
1
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)),
'Label'
:
np
.
random
.
randint
(
0
,
2
,
tuple
(
batch_size
+
[
num_classes
]))
.
astype
(
"float32"
)
}
# Fw Pass is implemented as elementwise sigmoid followed by
# elementwise logistic loss
# Label * -log(sigmoid(X)) + (1 - label) * -log(1 - sigmoid(X))
sigmoid_X
=
expit
(
self
.
inputs
[
'X'
])
term1
=
self
.
inputs
[
'Label'
]
*
np
.
log
(
sigmoid_X
)
term2
=
(
1
-
self
.
inputs
[
'Label'
])
*
np
.
log
(
1
-
sigmoid_X
)
self
.
outputs
=
{
'Out'
:
-
term1
-
term2
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录