未验证 提交 2d57158e 编写于 作者: Y Yan Chunwei 提交者: GitHub

fea/init tensorrt engine (#10003)

上级 64babc9a
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/framework.pb.h"
namespace paddle {
namespace inference {
/*
* EngineBase is the base class of all inference engines. An inference engine
* takes a paddle program as input, and outputs the result in fluid Tensor
* format. It can be used to optimize performance of computation sub-blocks, for
* example, break down the original block into sub-blocks and execute each
* sub-blocks in different engines.
*
* For example:
* When inference, the resnet50 model can put most of the model into subgraph
* and run it on a TensorRT engine.
*
* There are several engines such as TensorRT and other frameworks, so an
* EngineBase is put forward to give an unified interface for all the
* different engine implemention.
*/
class EngineBase {
public:
using DescType = ::paddle::framework::proto::BlockDesc;
// Build the model and do some preparation, for example, in TensorRT, run
// createInferBuilder, buildCudaEngine.
virtual void Build(const DescType& paddle_model) = 0;
// Execute the engine, that will run the inference network.
virtual void Execute(int batch_size) = 0;
virtual ~EngineBase() {}
}; // class EngineBase
} // namespace inference
} // namespace paddle
nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader) if(WITH_TESTING)
nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader)
nv_test(test_tensorrt_engine SRCS test_engine.cc engine.cc DEPS dynload_cuda)
endif()
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/engine.h"
#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace tensorrt {
void TensorRTEngine::Build(const DescType& paddle_model) {
PADDLE_ENFORCE(false, "not implemented");
}
void TensorRTEngine::Execute(int batch_size) {
infer_context_->enqueue(batch_size, buffers_.data(), *stream_, nullptr);
cudaStreamSynchronize(*stream_);
}
TensorRTEngine::~TensorRTEngine() {
// clean buffer
for (auto& buffer : buffers_) {
if (buffer != nullptr) {
PADDLE_ENFORCE_EQ(0, cudaFree(buffer));
buffer = nullptr;
}
}
}
void TensorRTEngine::FreezeNetwork() {
PADDLE_ENFORCE(infer_builder_ != nullptr,
"Call InitNetwork first to initialize network.");
PADDLE_ENFORCE(infer_network_ != nullptr,
"Call InitNetwork first to initialize network.");
// build engine.
infer_builder_->setMaxBatchSize(max_batch_);
infer_builder_->setMaxWorkspaceSize(max_workspace_);
infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");
infer_context_.reset(infer_engine_->createExecutionContext());
// allocate GPU buffers.
buffers_.resize(buffer_sizes_.size(), nullptr);
for (auto& item : buffer_sizes_) {
if (item.second == 0) {
auto slot_offset = infer_engine_->getBindingIndex(item.first.c_str());
item.second = kDataTypeSize[static_cast<int>(
infer_engine_->getBindingDataType(slot_offset))] *
AccumDims(infer_engine_->getBindingDimensions(slot_offset));
}
PADDLE_ENFORCE_EQ(0, cudaMalloc(&buffer(item.first), item.second));
}
}
nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
nvinfer1::DataType dtype,
const nvinfer1::Dims& dim) {
PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
name);
PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
auto* input = infer_network_->addInput(name.c_str(), dtype, dim);
PADDLE_ENFORCE(input, "infer network add input %s failed", name);
buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] * AccumDims(dim);
return input;
}
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
const std::string& name) {
PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
name);
auto* output = layer->getOutput(offset);
PADDLE_ENFORCE(output != nullptr);
output->setName(name.c_str());
infer_network_->markOutput(*output);
// output buffers' size can only be decided latter, set zero here to mark this
// and will reset latter.
buffer_sizes_[name] = 0;
}
void* TensorRTEngine::GetOutputInGPU(const std::string& name) {
return buffer(name);
}
void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst,
size_t max_size) {
// determine data size
auto it = buffer_sizes_.find(name);
PADDLE_ENFORCE(it != buffer_sizes_.end());
PADDLE_ENFORCE_GT(it->second, 0);
PADDLE_ENFORCE_GE(max_size, it->second);
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buffer(name), it->second,
cudaMemcpyDeviceToHost, *stream_));
}
void*& TensorRTEngine::buffer(const std::string& name) {
PADDLE_ENFORCE(infer_engine_ != nullptr, "call FreezeNetwork first.");
auto it = buffer_sizes_.find(name);
PADDLE_ENFORCE(it != buffer_sizes_.end());
auto slot_offset = infer_engine_->getBindingIndex(name.c_str());
return buffers_[slot_offset];
}
void TensorRTEngine::SetInputFromCPU(const std::string& name, void* data,
size_t size) {
void* buf = buffer(name);
PADDLE_ENFORCE_EQ(
0, cudaMemcpyAsync(buf, data, size, cudaMemcpyHostToDevice, *stream_));
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <NvInfer.h>
#include <memory>
#include <unordered_map>
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* TensorRT Engine.
*
* There are two alternative ways to use it, one is to build from a paddle
* protobuf model, another way is to manully construct the network.
*/
class TensorRTEngine : public EngineBase {
public:
// Weight is model parameter.
class Weight {
public:
Weight(nvinfer1::DataType dtype, void* value, int num_elem) {
w_.type = dtype;
w_.values = value;
w_.count = num_elem;
}
const nvinfer1::Weights& get() { return w_; }
private:
nvinfer1::Weights w_;
};
TensorRTEngine(int max_batch, int max_workspace, cudaStream_t* stream,
nvinfer1::ILogger& logger = NaiveLogger::Global())
: max_batch_(max_batch),
max_workspace_(max_workspace),
stream_(stream),
logger_(logger) {}
virtual ~TensorRTEngine();
// TODO(Superjomn) implement it later when graph segmentation is supported.
virtual void Build(const DescType& paddle_model) override;
virtual void Execute(int batch_size) override;
// Initialize the inference network, so that TensorRT layers can add to this
// network.
void InitNetwork() {
infer_builder_.reset(createInferBuilder(logger_));
infer_network_.reset(infer_builder_->createNetwork());
}
// After finishing adding ops, freeze this network and creates the executation
// environment.
void FreezeNetwork();
// Add an input and set its name, data type and dimention.
nvinfer1::ITensor* DeclareInput(const std::string& name,
nvinfer1::DataType dtype,
const nvinfer1::Dims& dim);
// Set the offset-th output from a layer as the network's output, and set its
// name.
void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
const std::string& name);
// GPU memory address for an ITensor with specific name. One can operate on
// these memory directly for acceleration, for example, output the converted
// data directly to the buffer to save data copy overhead.
// NOTE this should be used after calling `FreezeNetwork`.
void*& buffer(const std::string& name);
// Fill an input from CPU memory with name and size.
void SetInputFromCPU(const std::string& name, void* data, size_t size);
// TODO(Superjomn) is this method necessary given that buffer(xxx) can be
// accessed directly. Fill an input from GPU memory with name and size.
void SetInputFromGPU(const std::string& name, void* data, size_t size);
// Get an output called name, the output of tensorrt is in GPU, so this method
// will just return the output's GPU memory address.
void* GetOutputInGPU(const std::string& name);
// LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU
// to CPU.
void GetOutputInCPU(const std::string& name, void* dst, size_t max_size);
nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
private:
// the max batch size
int max_batch_;
// the max memory size the engine uses
int max_workspace_;
cudaStream_t* stream_;
nvinfer1::ILogger& logger_;
std::vector<void*> buffers_;
// max data size for the buffers.
std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
// TensorRT related internal members
template <typename T>
struct Destroyer {
void operator()(T* x) { x->destroy(); }
};
template <typename T>
using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
infer_ptr<nvinfer1::IBuilder> infer_builder_;
infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
infer_ptr<nvinfer1::IExecutionContext> infer_context_;
}; // class TensorRTEngine
// Add an layer__ into engine__ with args ARGS.
// For example:
// TRT_ENGINE_ADD_LAYER(xxx, FullyConnected, input, dim, weights, bias)
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
engine__->network()->add##layer__(ARGS);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
#include "paddle/fluid/platform/dynload/tensorrt.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace dy = paddle::platform::dynload;
static size_t AccumDims(nvinfer1::Dims dims) {
size_t num = dims.nbDims == 0 ? 0 : 1;
for (int i = 0; i < dims.nbDims; i++) {
PADDLE_ENFORCE_GT(dims.d[i], 0);
num *= dims.d[i];
}
return num;
}
// TensorRT data type to size
const int kDataTypeSize[] = {
4, // kFLOAT
2, // kHALF
1, // kINT8
4 // kINT32
};
// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
static nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger& logger) {
return static_cast<nvinfer1::IBuilder*>(
dy::createInferBuilder_INTERNAL(&logger, NV_TENSORRT_VERSION));
}
static nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger& logger) {
return static_cast<nvinfer1::IRuntime*>(
dy::createInferRuntime_INTERNAL(&logger, NV_TENSORRT_VERSION));
}
// A logger for create TensorRT infer builder.
class NaiveLogger : public nvinfer1::ILogger {
public:
void log(nvinfer1::ILogger::Severity severity, const char* msg) override {
switch (severity) {
case Severity::kINFO:
LOG(INFO) << msg;
break;
case Severity::kWARNING:
LOG(WARNING) << msg;
break;
case Severity::kINTERNAL_ERROR:
case Severity::kERROR:
LOG(ERROR) << msg;
break;
default:
break;
}
}
static nvinfer1::ILogger& Global() {
static nvinfer1::ILogger* x = new NaiveLogger;
return *x;
}
virtual ~NaiveLogger() override {}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/engine.h"
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace tensorrt {
class TensorRTEngineTest : public ::testing::Test {
protected:
void SetUp() override {
ASSERT_EQ(0, cudaStreamCreate(&stream_));
engine_ = new TensorRTEngine(1, 1 << 10, &stream_);
engine_->InitNetwork();
}
void TearDown() override {
delete engine_;
cudaStreamDestroy(stream_);
}
protected:
TensorRTEngine* engine_;
cudaStream_t stream_;
};
TEST_F(TensorRTEngineTest, add_layer) {
const int size = 1;
float raw_weight[size] = {2.}; // Weight in CPU memory.
float raw_bias[size] = {3.};
LOG(INFO) << "create weights";
TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, size);
TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, size);
auto* x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
nvinfer1::DimsCHW{1, 1, 1});
auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, size,
weight.get(), bias.get());
PADDLE_ENFORCE(fc_layer != nullptr);
engine_->DeclareOutput(fc_layer, 0, "y");
LOG(INFO) << "freeze network";
engine_->FreezeNetwork();
ASSERT_EQ(engine_->engine()->getNbBindings(), 2);
// fill in real data
float x_v = 1234;
engine_->SetInputFromCPU("x", (void*)&x_v, 1 * sizeof(float));
LOG(INFO) << "to execute";
engine_->Execute(1);
LOG(INFO) << "to get output";
// void* y_v =
float y_cpu;
engine_->GetOutputInCPU("y", &y_cpu, sizeof(float));
LOG(INFO) << "to checkout output";
ASSERT_EQ(y_cpu, x_v * 2 + 3);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <glog/logging.h> #include <glog/logging.h>
#include <gtest/gtest.h> #include <gtest/gtest.h>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册