Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2d0ddf8c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2d0ddf8c
编写于
8月 30, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine cpu gru batch mode
上级
70d39812
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
146 addition
and
154 deletion
+146
-154
paddle/fluid/operators/fusion_gru_op.cc
paddle/fluid/operators/fusion_gru_op.cc
+141
-149
paddle/fluid/operators/math/sequence2batch.h
paddle/fluid/operators/math/sequence2batch.h
+5
-5
未找到文件。
paddle/fluid/operators/fusion_gru_op.cc
浏览文件 @
2d0ddf8c
...
@@ -13,16 +13,13 @@ See the License for the specific language governing permissions and
...
@@ -13,16 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/fusion_gru_op.h"
#include "paddle/fluid/operators/fusion_gru_op.h"
#include <cstring> // for memcpy
#include <string>
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/gru_compute.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -35,12 +32,12 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -35,12 +32,12 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
"Input(WeightH) of GRU should not be null."
);
"Input(WeightH) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XX"
),
"Output(XX) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XX"
),
"Output(XX) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"
BatchedGate
"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"
ReorderedH0
"
),
"Output(
BatchedGate
) of GRU should not be null."
);
"Output(
ReorderedH0
) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Batch
ResetHiddenPrev
"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Batch
edInput
"
),
"Output(Batch
ResetHiddenPrev
) of GRU should not be null."
);
"Output(Batch
edInput
) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Batched
Hidden
"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Batched
Out
"
),
"Output(Batched
Hidden
) of GRU should not be null."
);
"Output(Batched
Out
) of GRU should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(Hidden) of GRU should not be null."
);
"Output(Hidden) of GRU should not be null."
);
...
@@ -83,9 +80,8 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -83,9 +80,8 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
}
}
framework
::
DDim
out_dims
({
x_dims
[
0
],
frame_size
});
framework
::
DDim
out_dims
({
x_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchedGate"
,
{
x_dims
[
0
],
wx_dims
[
1
]});
ctx
->
SetOutputDim
(
"BatchedInput"
,
{
x_dims
[
0
],
wx_dims
[
1
]});
ctx
->
SetOutputDim
(
"BatchedHidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchedOut"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchResetHiddenPrev"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
int
xx_width
=
x_dims
[
1
]
>
wx_dims
[
1
]
?
wx_dims
[
1
]
:
x_dims
[
1
];
int
xx_width
=
x_dims
[
1
]
>
wx_dims
[
1
]
?
wx_dims
[
1
]
:
x_dims
[
1
];
...
@@ -115,22 +111,26 @@ void FusionGRUOpMaker::Make() {
...
@@ -115,22 +111,26 @@ void FusionGRUOpMaker::Make() {
"(Tensor) The FC weight with shape (M x 3D),"
"(Tensor) The FC weight with shape (M x 3D),"
"where M is the dim size of x, D is the hidden size. "
);
"where M is the dim size of x, D is the hidden size. "
);
AddInput
(
"WeightH"
,
AddInput
(
"WeightH"
,
"(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
);
"(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
"This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
"Acutally they are D x 2D and D x D two part weights."
"{W_update, W_reset; W_state}"
"{D x (D + D); D x D}"
);
AddInput
(
"Bias"
,
AddInput
(
"Bias"
,
"(Tensor, optional) (1 x 3D)."
"(Tensor, optional) (1 x 3D)."
"Almost same as GRUOp."
"Almost same as GRUOp."
"Note: if have FC bias it should be added on this bias."
)
"Note: if have FC bias it should be added on this bias."
)
.
AsDispensable
();
.
AsDispensable
();
AddOutput
(
"ReorderedH0"
,
"(Tensor) (N x D), which N is the min-batch size."
)
.
AsIntermediate
();
AddOutput
(
"XX"
,
AddOutput
(
"XX"
,
"(LoDTensor) the result after X * WeightX (size is T x
4
D)"
"(LoDTensor) the result after X * WeightX (size is T x
3
D)"
" or batched_X (size is T x M), this will be automatically chosen,"
" or batched_X (size is T x M), this will be automatically chosen,"
" where T is the total time steps in this mini-batch,"
" where T is the total time steps in this mini-batch,"
" D is the hidden size, M is the dim size of x input."
)
" D is the hidden size, M is the dim size of x input."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"BatchedGate"
,
"(LoDTensor) Same as GRUOp"
).
AsIntermediate
();
AddOutput
(
"BatchedInput"
,
"(LoDTensor) (T x 3D)"
).
AsIntermediate
();
AddOutput
(
"BatchResetHiddenPrev"
,
"(LoDTensor) (T x 3D) Same as GRUOp."
)
AddOutput
(
"BatchedOut"
,
"(LoDTensor) (T X D) save batched hidden."
)
.
AsIntermediate
();
AddOutput
(
"BatchedHidden"
,
"(LoDTensor) (T X D) Same as GRUOp."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"Hidden"
,
"(LoDTensor) (T x D) Same as GRUOp"
);
AddOutput
(
"Hidden"
,
"(LoDTensor) (T x D) Same as GRUOp"
);
AddAttr
<
std
::
string
>
(
"activation"
,
AddAttr
<
std
::
string
>
(
"activation"
,
...
@@ -153,45 +153,53 @@ more details can refer to GRU op.
...
@@ -153,45 +153,53 @@ more details can refer to GRU op.
)DOC"
);
)DOC"
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
inline
void
ReorderInitState
(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
src
,
framework
::
Vector
<
size_t
>
index_lod
,
framework
::
Tensor
*
dst
,
bool
indexed_src
)
{
math
::
CopyMatrixRowsFunctor
<
DeviceContext
,
T
>
row_shuffle
;
dst
->
mutable_data
<
T
>
(
src
.
dims
(),
ctx
.
GetPlace
());
row_shuffle
(
ctx
,
src
,
index_lod
,
dst
,
indexed_src
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
FusionGRUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
FusionGRUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
wx
=
ctx
.
Input
<
Tensor
>
(
"WeightX"
);
auto
*
wx
=
ctx
.
Input
<
Tensor
>
(
"WeightX"
);
auto
*
wh
=
ctx
.
Input
<
Tensor
>
(
"WeightH"
);
auto
*
wh
=
ctx
.
Input
<
Tensor
>
(
"WeightH"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
xx
=
ctx
.
Output
<
LoDTensor
>
(
"XX"
);
auto
*
xx
=
ctx
.
Output
<
LoDTensor
>
(
"XX"
);
auto
*
batched_gate
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedGate"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batch_reset_hidden_prev
=
auto
*
batched_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedOut"
);
ctx
.
Output
<
LoDTensor
>
(
"BatchResetHiddenPrev"
);
auto
*
batch_hidden
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedHidden"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"is_reverse"
);
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"is_reverse"
);
T
*
batched_gate_data
=
batched_gate
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_state
;
batch_reset_hidden_prev
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
function
<
void
(
const
int
,
const
T
,
const
T
*
,
T
*
)
>
bias_sub
;
batch_hidden
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
act_gate_str
=
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
);
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
act_state_str
=
ctx
.
Attr
<
std
::
string
>
(
"activation"
);
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx
))
{
math
::
VecActivations
<
T
,
platform
::
jit
::
avx
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_state
=
act_functor
(
act_state_str
);
bias_sub
=
math
::
vec_bias_sub
<
T
,
platform
::
jit
::
avx
>
;
}
else
{
math
::
VecActivations
<
T
,
platform
::
jit
::
isa_any
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_state
=
act_functor
(
act_state_str
);
bias_sub
=
math
::
vec_bias_sub
<
T
,
platform
::
jit
::
isa_any
>
;
}
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
wx_data
=
wx
->
data
<
T
>
();
const
T
*
wx_data
=
wx
->
data
<
T
>
();
const
T
*
wh_data
=
wh
->
data
<
T
>
();
const
T
*
wh_data
=
wh
->
data
<
T
>
();
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_input_data
=
batched_input
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_out_data
=
batched_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
x_dims
=
x
->
dims
();
auto
x_dims
=
x
->
dims
();
auto
wx_dims
=
wx
->
dims
();
auto
wx_dims
=
wx
->
dims
();
const
int
D3
=
wx_dims
[
1
];
const
int
D
=
D3
/
3
;
const
int
D2
=
D
*
2
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
...
@@ -199,125 +207,110 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -199,125 +207,110 @@ class FusionGRUKernel : public framework::OpKernel<T> {
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
x_dims
[
0
],
wx_dims
[
1
],
x_dims
[
1
],
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
x_dims
[
0
],
wx_dims
[
1
],
x_dims
[
1
],
x_data
,
wx_data
,
xx_data
,
x_data
,
wx_data
,
xx_data
,
bias
?
bias
->
data
<
T
>
()
:
NULL
);
bias
?
bias
->
data
<
T
>
()
:
NULL
);
to_batch
(
dev_ctx
,
*
xx
,
batched_
gate
,
true
,
is_reverse
);
to_batch
(
dev_ctx
,
*
xx
,
batched_
input
,
true
,
is_reverse
);
}
else
{
}
else
{
to_batch
(
dev_ctx
,
*
x
,
xx
,
true
,
is_reverse
);
to_batch
(
dev_ctx
,
*
x
,
xx
,
true
,
is_reverse
);
batched_
gate
->
set_lod
(
xx
->
lod
());
batched_
input
->
set_lod
(
xx
->
lod
());
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
x_dims
[
0
],
wx_dims
[
1
],
x_dims
[
1
],
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
x_dims
[
0
],
wx_dims
[
1
],
x_dims
[
1
],
xx_data
,
wx_data
,
batched_
gate
_data
,
xx_data
,
wx_data
,
batched_
input
_data
,
bias
?
bias
->
data
<
T
>
()
:
NULL
);
bias
?
bias
->
data
<
T
>
()
:
NULL
);
}
}
int
frame_size
=
static_cast
<
int
>
(
wx_dims
[
1
]
/
3
);
auto
batched_lod
=
batched_input
->
lod
();
math
::
GRUMetaValue
<
T
>
gru_value
;
const
auto
&
seq_order
=
batched_lod
[
2
];
gru_value
.
gate_weight
=
const_cast
<
T
*>
(
wh_data
);
const
int
max_bs
=
seq_order
.
size
();
gru_value
.
state_weight
=
reordered_h0
->
Resize
({
max_bs
,
D
});
const_cast
<
T
*>
(
wh_data
+
2
*
frame_size
*
frame_size
);
Tensor
ordered_h0
;
framework
::
Vector
<
size_t
>
order
(
batched_gate
->
lod
()[
2
]);
int
tstart
=
0
;
T
*
prev_hidden_data
=
NULL
;
if
(
h0
)
{
if
(
h0
)
{
ReorderInitState
<
DeviceContext
,
T
>
(
// reorder h0
ctx
.
template
device_context
<
DeviceContext
>(),
*
h0
,
order
,
&
ordered_h0
,
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
true
);
const
T
*
h0_data
=
h0
->
data
<
T
>
();
gru_value
.
prev_out_value
=
ordered_h0
.
data
<
T
>
();
prev_hidden_data
=
reordered_h0_data
;
size_t
sz
=
sizeof
(
T
)
*
D
;
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
std
::
memcpy
(
reordered_h0_data
,
h0_data
+
seq_order
[
i
]
*
D
,
sz
);
reordered_h0_data
+=
D
;
}
}
else
{
}
else
{
gru_value
.
prev_out_value
=
nullptr
;
// compute without h0
T
*
cur_in_data
=
batched_input_data
;
T
*
cur_out_data
=
batched_out_data
;
// W: {W_update, W_reset; W_state}
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
// update gate
act_gate
(
D
,
cur_in_data
,
cur_in_data
);
// state gate
act_state
(
D
,
cur_in_data
+
D2
,
cur_in_data
+
D2
);
// out = a*b
blas
.
VMUL
(
D
,
cur_in_data
,
cur_in_data
+
D2
,
cur_out_data
);
// add offset
cur_in_data
+=
D3
;
cur_out_data
+=
D
;
}
tstart
=
1
;
prev_hidden_data
=
batched_out_data
;
}
}
auto
batch_starts
=
batched_gate
->
lod
()[
0
];
// Then start from next
size_t
seq_len
=
batch_starts
.
size
()
-
1
;
const
T
*
wh_state_data
=
wh_data
+
D
*
D2
;
auto
active_node
=
const
auto
&
batch_starts
=
batched_lod
[
0
];
math
::
detail
::
GetActivationType
(
ctx
.
Attr
<
std
::
string
>
(
"activation"
));
const
int
max_seq_len
=
batch_starts
.
size
()
-
1
;
auto
active_gate
=
math
::
detail
::
GetActivationType
(
batched_input_data
=
batched_input_data
+
tstart
*
max_bs
*
D3
;
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
));
batched_out_data
=
batched_out_data
+
tstart
*
max_bs
*
D
;
for
(
int
step
=
tstart
;
step
<
max_seq_len
;
++
step
)
{
#ifdef PADDLE_WITH_MKLML
const
int
cur_bs
=
batch_starts
[
step
+
1
]
-
batch_starts
[
step
];
// use MKL packed to speedup GEMM
// gemm prev * (Wu + Wr)
if
(
FLAGS_paddle_num_threads
>=
4
)
{
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
cur_bs
,
D2
,
D
,
static_cast
<
T
>
(
1
),
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
prev_hidden_data
,
D
,
wh_data
,
D2
,
static_cast
<
T
>
(
1
),
T
*
packed_gate
=
blas
.
GEMM_ALLOC
(
CblasBMatrix
,
1
/*height of C*/
,
batched_input_data
,
D3
);
frame_size
*
2
/*width of weight*/
,
frame_size
/*height of height*/
);
T
*
cur_batched_data
=
batched_input_data
;
PADDLE_ENFORCE
(
packed_gate
);
T
*
cur_prev_hidden_data
=
prev_hidden_data
;
blas
.
GEMM_PACK
(
CblasBMatrix
,
CblasNoTrans
,
1
/*cur bs?*/
,
frame_size
*
2
,
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
frame_size
,
T
(
1.0
),
gru_value
.
gate_weight
,
frame_size
*
2
,
act_gate
(
D2
,
cur_batched_data
,
cur_batched_data
);
packed_gate
);
// rt = rt*ht_1 inplace result
T
*
packed_state
=
blas
.
GEMM_ALLOC
(
CblasBMatrix
,
1
/*height of C*/
,
// TODO(TJ): try to save to cur out data
frame_size
/*width of weight*/
,
// maybe get benifits avoiding cache miss in next gemm
frame_size
/*height of height*/
);
blas
.
VMUL
(
D
,
cur_prev_hidden_data
,
cur_batched_data
+
D
,
PADDLE_ENFORCE
(
packed_state
);
cur_batched_data
+
D
);
blas
.
GEMM_PACK
(
CblasBMatrix
,
CblasNoTrans
,
1
/*cur bs?*/
,
frame_size
,
frame_size
,
T
(
1.0
),
gru_value
.
state_weight
,
frame_size
,
cur_batched_data
+=
D3
;
packed_state
);
cur_prev_hidden_data
+=
D
;
for
(
size_t
n
=
0
;
n
<
seq_len
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
int
cur_batch_size
=
bend
-
bstart
;
Tensor
gate_t
=
batched_gate
->
Slice
(
bstart
,
bend
);
Tensor
reset_hidden_prev_t
=
batch_reset_hidden_prev
->
Slice
(
bstart
,
bend
);
Tensor
hidden_t
=
batch_hidden
->
Slice
(
bstart
,
bend
);
gru_value
.
output_value
=
hidden_t
.
data
<
T
>
();
gru_value
.
gate_value
=
gate_t
.
data
<
T
>
();
gru_value
.
reset_output_value
=
reset_hidden_prev_t
.
data
<
T
>
();
if
(
gru_value
.
prev_out_value
)
{
blas
.
GEMM_COMPUTE
(
CblasNoTrans
,
CblasPacked
,
cur_batch_size
,
frame_size
*
2
,
frame_size
,
gru_value
.
prev_out_value
,
frame_size
,
packed_gate
,
frame_size
*
2
,
T
(
1
),
gru_value
.
gate_value
,
frame_size
*
3
);
}
math
::
detail
::
forward_reset_output
(
math
::
detail
::
forward
::
gru_resetOutput
<
T
>
(),
gru_value
,
frame_size
,
cur_batch_size
,
active_gate
);
if
(
gru_value
.
prev_out_value
)
{
blas
.
GEMM_COMPUTE
(
CblasNoTrans
,
CblasPacked
,
cur_batch_size
,
frame_size
,
frame_size
,
gru_value
.
reset_output_value
,
frame_size
,
packed_state
,
frame_size
,
T
(
1
),
gru_value
.
gate_value
+
frame_size
*
2
,
frame_size
*
3
);
}
math
::
detail
::
forward_final_output
(
math
::
detail
::
forward
::
gru_finalOutput
<
T
>
(),
gru_value
,
frame_size
,
cur_batch_size
,
active_node
);
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
}
}
blas
.
GEMM_FREE
(
packed_gate
);
cur_batched_data
=
batched_input_data
;
blas
.
GEMM_FREE
(
packed_state
);
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
cur_bs
,
D
,
D
,
static_cast
<
T
>
(
1
),
}
else
{
cur_batched_data
+
D
,
D3
,
wh_state_data
,
D
,
static_cast
<
T
>
(
1
),
#endif
cur_batched_data
+
D2
,
D3
);
for
(
size_t
n
=
0
;
n
<
seq_len
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
T
*
cur_out_data
=
batched_out_data
;
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
cur_prev_hidden_data
=
prev_hidden_data
;
int
cur_batch_size
=
bend
-
bstart
;
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
// ht~ = act_state(...)
Tensor
gate_t
=
batched_gate
->
Slice
(
bstart
,
bend
);
act_state
(
D
,
cur_batched_data
+
D2
,
cur_batched_data
+
D2
);
Tensor
reset_hidden_prev_t
=
// ht~~ = zt*ht~ inplace result
batch_reset_hidden_prev
->
Slice
(
bstart
,
bend
);
blas
.
VMUL
(
D
,
cur_batched_data
,
cur_batched_data
+
D2
,
Tensor
hidden_t
=
batch_hidden
->
Slice
(
bstart
,
bend
);
cur_batched_data
+
D2
);
gru_value
.
output_value
=
hidden_t
.
data
<
T
>
();
// zt = 1 - zt inplace result
gru_value
.
gate_value
=
gate_t
.
data
<
T
>
();
bias_sub
(
D
,
static_cast
<
T
>
(
1
),
cur_batched_data
,
cur_batched_data
);
gru_value
.
reset_output_value
=
reset_hidden_prev_t
.
data
<
T
>
();
// zt = ht_1 * zt
blas
.
VMUL
(
D
,
cur_prev_hidden_data
,
cur_batched_data
,
cur_batched_data
);
math
::
GRUUnitFunctor
<
DeviceContext
,
T
>::
compute
(
// out = zt + ht~~
dev_ctx
,
gru_value
,
frame_size
,
cur_batch_size
,
active_node
,
blas
.
VADD
(
D
,
cur_batched_data
,
cur_batched_data
+
D2
,
cur_out_data
);
active_gate
);
cur_batched_data
+=
D3
;
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
cur_prev_hidden_data
+=
D
;
cur_out_data
+=
D
;
}
}
#ifdef PADDLE_WITH_MKLML
prev_hidden_data
=
batched_out_data
;
batched_out_data
=
cur_out_data
;
batched_input_data
=
cur_batched_data
;
}
}
#endif
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
math
::
Batch2LoDTensorFunctor
<
DeviceContext
,
T
>
to_seq
;
batch
_hidden
->
set_lod
(
batched_gate
->
lod
()
);
batch
ed_out
->
set_lod
(
batched_lod
);
to_seq
(
dev_ctx
,
*
batch
_hidden
,
hidden_out
);
to_seq
(
dev_ctx
,
*
batch
ed_out
,
hidden_out
);
}
}
};
};
...
@@ -327,6 +320,5 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -327,6 +320,5 @@ class FusionGRUKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fusion_gru
,
ops
::
FusionGRUOp
,
ops
::
FusionGRUOpMaker
,
REGISTER_OPERATOR
(
fusion_gru
,
ops
::
FusionGRUOp
,
ops
::
FusionGRUOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
fusion_gru
,
ops
::
FusionGRUKernel
<
float
>
,
fusion_gru
,
ops
::
FusionGRUKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
FusionGRUKernel
<
double
>
);
ops
::
FusionGRUKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/math/sequence2batch.h
浏览文件 @
2d0ddf8c
...
@@ -92,7 +92,7 @@ class LoDTensor2BatchFunctor {
...
@@ -92,7 +92,7 @@ class LoDTensor2BatchFunctor {
// Calculate the start position of each batch.
// Calculate the start position of each batch.
// example: sequences = {s0, s1, s2}
// example: sequences = {s0, s1, s2}
// s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
// s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
//
num_batch
= 5,
//
max_seqlen
= 5,
// batchIndex = {b0, b1, b2, b3, b4}
// batchIndex = {b0, b1, b2, b3, b4}
// b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
// b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
// batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
// batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
...
@@ -109,7 +109,7 @@ class LoDTensor2BatchFunctor {
...
@@ -109,7 +109,7 @@ class LoDTensor2BatchFunctor {
// where 1 is the second sequence,
// where 1 is the second sequence,
// 0 is the first sequence,
// 0 is the first sequence,
// 2 is the third sequence.
// 2 is the third sequence.
// The
num_batch
represents batch size after rearranging the
// The
max_seqlen
represents batch size after rearranging the
// input LodTensor. It is also the maximum length of input sequence.
// input LodTensor. It is also the maximum length of input sequence.
paddle
::
framework
::
LoD
batch_lods
;
paddle
::
framework
::
LoD
batch_lods
;
...
@@ -118,8 +118,8 @@ class LoDTensor2BatchFunctor {
...
@@ -118,8 +118,8 @@ class LoDTensor2BatchFunctor {
batch_lods
.
emplace_back
(
std
::
vector
<
size_t
>
{
0
});
batch_lods
.
emplace_back
(
std
::
vector
<
size_t
>
{
0
});
// batch_lods[0] is the start positions for batch LoDTensor
// batch_lods[0] is the start positions for batch LoDTensor
int
num_batch
=
seq_info
[
0
].
length
;
int
max_seqlen
=
seq_info
[
0
].
length
;
batch_lods
[
0
].
resize
(
static_cast
<
size_t
>
(
num_batch
+
1
));
batch_lods
[
0
].
resize
(
static_cast
<
size_t
>
(
max_seqlen
+
1
));
// batch_lods[1] is the raw index in the input LoDTensor
// batch_lods[1] is the raw index in the input LoDTensor
batch_lods
[
1
].
resize
(
static_cast
<
size_t
>
(
lod_tensor
.
dims
()[
0
]));
batch_lods
[
1
].
resize
(
static_cast
<
size_t
>
(
lod_tensor
.
dims
()[
0
]));
// batch_lods[2] is the sort order for the input LoDTensor.
// batch_lods[2] is the sort order for the input LoDTensor.
...
@@ -128,7 +128,7 @@ class LoDTensor2BatchFunctor {
...
@@ -128,7 +128,7 @@ class LoDTensor2BatchFunctor {
size_t
*
batch_starts
=
batch_lods
[
0
].
data
();
size_t
*
batch_starts
=
batch_lods
[
0
].
data
();
size_t
*
seq2batch_idx
=
batch_lods
[
1
].
data
();
size_t
*
seq2batch_idx
=
batch_lods
[
1
].
data
();
batch_starts
[
0
]
=
0
;
batch_starts
[
0
]
=
0
;
for
(
int
n
=
0
;
n
<
num_batch
;
n
++
)
{
for
(
int
n
=
0
;
n
<
max_seqlen
;
n
++
)
{
auto
batch_id
=
static_cast
<
int
>
(
batch_starts
[
n
]);
auto
batch_id
=
static_cast
<
int
>
(
batch_starts
[
n
]);
for
(
size_t
i
=
0
;
i
<
seq_info
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
seq_info
.
size
();
++
i
)
{
int
seq_len
=
seq_info
[
i
].
length
;
int
seq_len
=
seq_info
[
i
].
length
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录