Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2bd92754
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
2bd92754
编写于
2月 02, 2018
作者:
Y
Yu Yang
提交者:
GitHub
2月 02, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8005 from reyoung/feature/make_nmt_normal_unittest
Make NMT as normal python unittests
上级
6d9607bb
3b87080a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
85 addition
and
24 deletion
+85
-24
paddle/operators/while_op.cc
paddle/operators/while_op.cc
+2
-0
python/paddle/v2/fluid/layers/tensor.py
python/paddle/v2/fluid/layers/tensor.py
+2
-2
python/paddle/v2/fluid/tests/book/test_machine_translation.py
...on/paddle/v2/fluid/tests/book/test_machine_translation.py
+81
-22
未找到文件。
paddle/operators/while_op.cc
浏览文件 @
2bd92754
...
@@ -53,6 +53,8 @@ class WhileOp : public framework::OperatorBase {
...
@@ -53,6 +53,8 @@ class WhileOp : public framework::OperatorBase {
auto
step_scopes
=
auto
step_scopes
=
scope
.
FindVar
(
Output
(
kStepScopes
))
->
GetMutable
<
StepScopeVar
>
();
scope
.
FindVar
(
Output
(
kStepScopes
))
->
GetMutable
<
StepScopeVar
>
();
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
cond
.
place
()),
"Condition of while op must in CPU memory."
);
while
(
cond
.
data
<
bool
>
()[
0
])
{
while
(
cond
.
data
<
bool
>
()[
0
])
{
auto
&
current_scope
=
scope
.
NewScope
();
auto
&
current_scope
=
scope
.
NewScope
();
step_scopes
->
push_back
(
&
current_scope
);
step_scopes
->
push_back
(
&
current_scope
);
...
...
python/paddle/v2/fluid/layers/tensor.py
浏览文件 @
2bd92754
...
@@ -295,7 +295,7 @@ def fill_constant_batch_size_like(input,
...
@@ -295,7 +295,7 @@ def fill_constant_batch_size_like(input,
return
out
return
out
def
ones
(
shape
,
dtype
):
def
ones
(
shape
,
dtype
,
force_cpu
=
False
):
"""
"""
**ones**
**ones**
...
@@ -319,7 +319,7 @@ def ones(shape, dtype):
...
@@ -319,7 +319,7 @@ def ones(shape, dtype):
return
fill_constant
(
value
=
1.0
,
**
locals
())
return
fill_constant
(
value
=
1.0
,
**
locals
())
def
zeros
(
shape
,
dtype
):
def
zeros
(
shape
,
dtype
,
force_cpu
=
False
):
"""
"""
**zeros**
**zeros**
...
...
python/paddle/v2/fluid/tests/book/test_machine_translation.py
浏览文件 @
2bd92754
...
@@ -11,21 +11,20 @@
...
@@ -11,21 +11,20 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
contextlib
import
numpy
as
np
import
numpy
as
np
import
paddle.v2
as
paddle
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid.layers
as
pd
import
paddle.v2.fluid.layers
as
pd
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.executor
import
Executor
import
unittest
dict_size
=
30000
dict_size
=
30000
source_dict_dim
=
target_dict_dim
=
dict_size
source_dict_dim
=
target_dict_dim
=
dict_size
src_dict
,
trg_dict
=
paddle
.
dataset
.
wmt14
.
get_dict
(
dict_size
)
hidden_dim
=
32
hidden_dim
=
32
word_dim
=
16
word_dim
=
16
IS_SPARSE
=
True
batch_size
=
2
batch_size
=
2
max_length
=
8
max_length
=
8
topk_size
=
50
topk_size
=
50
...
@@ -34,10 +33,8 @@ beam_size = 2
...
@@ -34,10 +33,8 @@ beam_size = 2
decoder_size
=
hidden_dim
decoder_size
=
hidden_dim
place
=
core
.
CPUPlace
()
def
encoder
(
is_sparse
):
def
encoder
():
# encoder
# encoder
src_word_id
=
pd
.
data
(
src_word_id
=
pd
.
data
(
name
=
"src_word_id"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
name
=
"src_word_id"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
...
@@ -45,7 +42,7 @@ def encoder():
...
@@ -45,7 +42,7 @@ def encoder():
input
=
src_word_id
,
input
=
src_word_id
,
size
=
[
dict_size
,
word_dim
],
size
=
[
dict_size
,
word_dim
],
dtype
=
'float32'
,
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
is_sparse
=
is_sparse
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'vemb'
))
param_attr
=
fluid
.
ParamAttr
(
name
=
'vemb'
))
fc1
=
pd
.
fc
(
input
=
src_embedding
,
size
=
hidden_dim
*
4
,
act
=
'tanh'
)
fc1
=
pd
.
fc
(
input
=
src_embedding
,
size
=
hidden_dim
*
4
,
act
=
'tanh'
)
...
@@ -54,7 +51,7 @@ def encoder():
...
@@ -54,7 +51,7 @@ def encoder():
return
encoder_out
return
encoder_out
def
decoder_train
(
context
):
def
decoder_train
(
context
,
is_sparse
):
# decoder
# decoder
trg_language_word
=
pd
.
data
(
trg_language_word
=
pd
.
data
(
name
=
"target_language_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
name
=
"target_language_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
...
@@ -62,7 +59,7 @@ def decoder_train(context):
...
@@ -62,7 +59,7 @@ def decoder_train(context):
input
=
trg_language_word
,
input
=
trg_language_word
,
size
=
[
dict_size
,
word_dim
],
size
=
[
dict_size
,
word_dim
],
dtype
=
'float32'
,
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
is_sparse
=
is_sparse
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'vemb'
))
param_attr
=
fluid
.
ParamAttr
(
name
=
'vemb'
))
rnn
=
pd
.
DynamicRNN
()
rnn
=
pd
.
DynamicRNN
()
...
@@ -82,10 +79,10 @@ def decoder_train(context):
...
@@ -82,10 +79,10 @@ def decoder_train(context):
return
rnn
()
return
rnn
()
def
decoder_decode
(
context
):
def
decoder_decode
(
context
,
is_sparse
):
init_state
=
context
init_state
=
context
array_len
=
pd
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
max_length
)
array_len
=
pd
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
max_length
)
counter
=
pd
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
)
counter
=
pd
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
,
force_cpu
=
True
)
# fill the first element with init_state
# fill the first element with init_state
state_array
=
pd
.
create_array
(
'float32'
)
state_array
=
pd
.
create_array
(
'float32'
)
...
@@ -117,7 +114,7 @@ def decoder_decode(context):
...
@@ -117,7 +114,7 @@ def decoder_decode(context):
input
=
pre_ids
,
input
=
pre_ids
,
size
=
[
dict_size
,
word_dim
],
size
=
[
dict_size
,
word_dim
],
dtype
=
'float32'
,
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
)
is_sparse
=
is_sparse
)
# use rnn unit to update rnn
# use rnn unit to update rnn
current_state
=
pd
.
fc
(
input
=
[
pre_ids_emb
,
pre_state_expanded
],
current_state
=
pd
.
fc
(
input
=
[
pre_ids_emb
,
pre_state_expanded
],
...
@@ -150,7 +147,7 @@ def decoder_decode(context):
...
@@ -150,7 +147,7 @@ def decoder_decode(context):
def
set_init_lod
(
data
,
lod
,
place
):
def
set_init_lod
(
data
,
lod
,
place
):
res
=
core
.
LoDTensor
()
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set
(
data
,
place
)
res
.
set_lod
(
lod
)
res
.
set_lod
(
lod
)
return
res
return
res
...
@@ -165,15 +162,19 @@ def to_lodtensor(data, place):
...
@@ -165,15 +162,19 @@ def to_lodtensor(data, place):
lod
.
append
(
cur_len
)
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
res
=
core
.
LoDTensor
()
res
=
fluid
.
LoDTensor
()
res
.
set
(
flattened_data
,
place
)
res
.
set
(
flattened_data
,
place
)
res
.
set_lod
([
lod
])
res
.
set_lod
([
lod
])
return
res
return
res
def
train_main
():
def
train_main
(
use_cuda
,
is_sparse
):
context
=
encoder
()
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
rnn_out
=
decoder_train
(
context
)
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
context
=
encoder
(
is_sparse
)
rnn_out
=
decoder_train
(
context
,
is_sparse
)
label
=
pd
.
data
(
label
=
pd
.
data
(
name
=
"target_language_next_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
name
=
"target_language_next_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
cost
=
pd
.
cross_entropy
(
input
=
rnn_out
,
label
=
label
)
cost
=
pd
.
cross_entropy
(
input
=
rnn_out
,
label
=
label
)
...
@@ -212,9 +213,13 @@ def train_main():
...
@@ -212,9 +213,13 @@ def train_main():
batch_id
+=
1
batch_id
+=
1
def
decode_main
():
def
decode_main
(
use_cuda
,
is_sparse
):
context
=
encoder
()
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
translation_ids
,
translation_scores
=
decoder_decode
(
context
)
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
context
=
encoder
(
is_sparse
)
translation_ids
,
translation_scores
=
decoder_decode
(
context
,
is_sparse
)
exe
=
Executor
(
place
)
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
exe
.
run
(
framework
.
default_startup_program
())
...
@@ -250,6 +255,60 @@ def decode_main():
...
@@ -250,6 +255,60 @@ def decode_main():
break
break
class
TestMachineTranslation
(
unittest
.
TestCase
):
pass
@
contextlib
.
contextmanager
def
scope_prog_guard
():
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
yield
def
inject_test_train
(
use_cuda
,
is_sparse
):
f_name
=
'test_{0}_{1}_train'
.
format
(
'cuda'
if
use_cuda
else
'cpu'
,
'sparse'
if
is_sparse
else
'dense'
)
def
f
(
*
args
):
with
scope_prog_guard
():
train_main
(
use_cuda
,
is_sparse
)
setattr
(
TestMachineTranslation
,
f_name
,
f
)
def
inject_test_decode
(
use_cuda
,
is_sparse
,
decorator
=
None
):
f_name
=
'test_{0}_{1}_decode'
.
format
(
'cuda'
if
use_cuda
else
'cpu'
,
'sparse'
if
is_sparse
else
'dense'
)
def
f
(
*
args
):
with
scope_prog_guard
():
decode_main
(
use_cuda
,
is_sparse
)
if
decorator
is
not
None
:
f
=
decorator
(
f
)
setattr
(
TestMachineTranslation
,
f_name
,
f
)
for
_use_cuda_
in
(
False
,
True
):
for
_is_sparse_
in
(
False
,
True
):
inject_test_train
(
_use_cuda_
,
_is_sparse_
)
for
_use_cuda_
in
(
False
,
True
):
for
_is_sparse_
in
(
False
,
True
):
_decorator_
=
None
if
_use_cuda_
:
_decorator_
=
unittest
.
skip
(
reason
=
'Beam Search does not support CUDA!'
)
inject_test_decode
(
is_sparse
=
_is_sparse_
,
use_cuda
=
_use_cuda_
,
decorator
=
_decorator_
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
# train_main()
unittest
.
main
()
decode_main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录