Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2acb84fe
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2acb84fe
编写于
6月 13, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add ImageExpandGrad Function.
上级
61aa1098
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
237 addition
and
80 deletion
+237
-80
paddle/function/GemmConvOp.h
paddle/function/GemmConvOp.h
+1
-0
paddle/function/ImageExpandOp.cpp
paddle/function/ImageExpandOp.cpp
+181
-43
paddle/gserver/layers/BlockExpandLayer.cpp
paddle/gserver/layers/BlockExpandLayer.cpp
+52
-37
paddle/gserver/layers/BlockExpandLayer.h
paddle/gserver/layers/BlockExpandLayer.h
+3
-0
未找到文件。
paddle/function/GemmConvOp.h
浏览文件 @
2acb84fe
...
...
@@ -44,6 +44,7 @@ enum ColFormat { kCFO = 0, kOCF = 1 };
* input_channels,
* filter_height,
* filter_width]
* TODO(hedaoyuan): Refactor the arguments of the interface with TensorShape.
*/
template
<
ColFormat
Format
,
DeviceType
Device
,
class
T
>
class
Im2ColFunctor
{
...
...
paddle/function/ImageExpandOp.cpp
浏览文件 @
2acb84fe
...
...
@@ -70,16 +70,67 @@ public:
}
};
template
<
class
T
>
class
Col2ImFunctor
<
kOCF
,
DEVICE_TYPE_CPU
,
T
>
{
public:
void
operator
()(
const
T
*
colData
,
int
inputChannels
,
int
inputHeight
,
int
inputWidth
,
int
filterHeight
,
int
filterWidth
,
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
,
int
outputHeight
,
int
outputWidth
,
T
*
imData
)
{
for
(
int
outputH
=
0
;
outputH
<
outputHeight
;
++
outputH
)
{
for
(
int
outputW
=
0
;
outputW
<
outputWidth
;
++
outputW
)
{
for
(
int
channel
=
0
;
channel
<
inputChannels
;
++
channel
)
{
for
(
int
filterH
=
0
;
filterH
<
filterHeight
;
++
filterH
)
{
for
(
int
filterW
=
0
;
filterW
<
filterWidth
;
++
filterW
)
{
int
imRowOffset
=
outputH
*
strideHeight
+
filterH
-
paddingHeight
;
int
imColOffset
=
outputW
*
strideWidth
+
filterW
-
paddingWidth
;
int
colDataOffset
=
(((
outputH
*
outputWidth
+
outputW
)
*
inputChannels
+
channel
)
*
filterHeight
+
filterH
)
*
filterWidth
+
filterW
;
if
(
imRowOffset
>=
0
&&
imRowOffset
<
inputHeight
&&
imColOffset
>=
0
&&
imColOffset
<
inputWidth
)
{
int
imDataOffset
=
(
channel
*
inputHeight
+
imRowOffset
)
*
inputWidth
+
imColOffset
;
imData
[
imDataOffset
]
+=
colData
[
colDataOffset
];
}
}
}
}
}
}
}
};
/*
* \brief Converts the image data of four dimensions(NCHW) into
* a sequence data of three dimensions(NST). Where N is batch size,
* S is the length of the sequence after each image is expanded,
* T is the size of each time step in the sequence.
* a sequence data of three dimensions(NST) in the forward calculation,
* which is reversed in the backward calculation.
* Where N is batch size, S is the length of the sequence after each
* image is expanded, T is the size of each time step in the sequence.
*
* Arguments in forward function:
* \param inputs[0] Image data of NCHW format.
* \param outputs[0] Sequence data of NST format.
*
* Arguments in backward function:
* \param inputs[0] Sequence data of NST format.
* \param outputs[0] Image data of NCHW format.
*/
template
<
DeviceType
Device
>
class
ImageExpandFunction
:
public
FunctionBase
{
public:
void
init
(
const
FuncConfig
&
config
)
override
{
...
...
@@ -93,25 +144,27 @@ public:
numOutputs_
=
1
;
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
const
TensorShape
&
input
=
inputs
[
0
].
shape
();
const
TensorShape
&
output
=
outputs
[
0
].
shape
();
// input argument should be 4-dimensional.
CHECK_EQ
(
input
.
ndims
(),
(
size_t
)
4
);
// output argument should be 3-dimensional.
CHECK_EQ
(
output
.
ndims
(),
(
size_t
)
3
);
// The batchSize of the input needs to be equal to
// the batchSize of the output.
CHECK_EQ
(
input
[
0
],
output
[
0
]);
size_t
batchSize
=
input
[
0
];
size_t
inputChannels
=
input
[
1
];
size_t
inputHeight
=
input
[
2
];
size_t
inputWidth
=
input
[
3
];
size_t
seqLength
=
output
[
1
];
size_t
stepSize
=
output
[
2
];
virtual
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
{}
void
check
(
const
TensorShape
&
image
,
const
TensorShape
&
sequence
)
{
// image shape should be 4-dimensional.
CHECK_EQ
(
image
.
ndims
(),
(
size_t
)
4
);
// sequence shape should be 3-dimensional.
CHECK_EQ
(
sequence
.
ndims
(),
(
size_t
)
3
);
// The batchSize of the image needs to be equal to
// the batchSize of the sequence.
CHECK_EQ
(
image
[
0
],
sequence
[
0
]);
}
// Calculate the shape of colData based on the shape of the image
// and the shape of the sequence.
TensorShape
getColShape
(
const
TensorShape
&
image
,
const
TensorShape
&
sequence
)
{
size_t
inputChannels
=
image
[
1
];
size_t
inputHeight
=
image
[
2
];
size_t
inputWidth
=
image
[
3
];
size_t
seqLength
=
sequence
[
1
];
size_t
stepSize
=
sequence
[
2
];
size_t
outputHeight
=
1
+
(
inputHeight
+
2
*
paddingH
()
-
blockH
()
+
strideH
()
-
1
)
/
strideH
();
...
...
@@ -121,8 +174,59 @@ public:
CHECK_EQ
(
seqLength
,
outputHeight
*
outputWidth
);
CHECK_EQ
(
stepSize
,
inputChannels
*
blockH
()
*
blockW
());
real
*
inputData
=
inputs
[
0
].
data
<
real
>
();
real
*
outputData
=
outputs
[
0
].
data
<
real
>
();
// [output_height, output_width,
// input_channels, filter_height, filter_width]
return
TensorShape
({
outputHeight
,
outputWidth
,
inputChannels
,
(
size_t
)
blockH
(),
(
size_t
)
blockW
()});
}
protected:
std
::
vector
<
size_t
>
strides_
;
std
::
vector
<
size_t
>
paddings_
;
std
::
vector
<
size_t
>
blocks_
;
inline
int
strideH
()
const
{
return
strides_
[
0
];
}
inline
int
strideW
()
const
{
return
strides_
[
1
];
}
inline
int
paddingH
()
const
{
return
paddings_
[
0
];
}
inline
int
paddingW
()
const
{
return
paddings_
[
1
];
}
inline
int
blockH
()
const
{
return
blocks_
[
0
];
}
inline
int
blockW
()
const
{
return
blocks_
[
1
];
}
};
template
<
DeviceType
Device
>
class
ImageExpandForward
:
public
ImageExpandFunction
{
public:
void
init
(
const
FuncConfig
&
config
)
override
{
ImageExpandFunction
::
init
(
config
);
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
const
TensorShape
&
image
=
inputs
[
0
].
shape
();
const
TensorShape
&
sequence
=
outputs
[
0
].
shape
();
check
(
image
,
sequence
);
TensorShape
colShape
=
getColShape
(
image
,
sequence
);
size_t
batchSize
=
image
[
0
];
size_t
inputChannels
=
image
[
1
];
size_t
inputHeight
=
image
[
2
];
size_t
inputWidth
=
image
[
3
];
size_t
seqLength
=
sequence
[
1
];
size_t
stepSize
=
sequence
[
2
];
size_t
outputHeight
=
colShape
[
0
];
size_t
outputWidth
=
colShape
[
1
];
real
*
imageData
=
inputs
[
0
].
data
<
real
>
();
real
*
seqData
=
outputs
[
0
].
data
<
real
>
();
Im2ColFunctor
<
kOCF
,
Device
,
real
>
im2col
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
// The result of im2col is [output_height, output_width,
...
...
@@ -130,7 +234,7 @@ public:
// reshape into [seqLength, stepSize], where seqLength is equal
// output_height * output_width, stepSize is equal
// input_channels * filter_height * filter_width
im2col
(
i
nput
Data
,
im2col
(
i
mage
Data
,
inputChannels
,
inputHeight
,
inputWidth
,
...
...
@@ -142,30 +246,64 @@ public:
paddingW
(),
outputHeight
,
outputWidth
,
output
Data
);
i
nput
Data
+=
inputChannels
*
inputHeight
*
inputWidth
;
output
Data
+=
seqLength
*
stepSize
;
seq
Data
);
i
mage
Data
+=
inputChannels
*
inputHeight
*
inputWidth
;
seq
Data
+=
seqLength
*
stepSize
;
}
}
};
protected:
std
::
vector
<
size_t
>
strides_
;
std
::
vector
<
size_t
>
paddings_
;
std
::
vector
<
size_t
>
blocks_
;
inline
int
strideH
()
const
{
return
strides_
[
0
];
}
inline
int
strideW
()
const
{
return
strides_
[
1
];
}
inline
int
paddingH
()
const
{
return
paddings_
[
0
];
}
template
<
DeviceType
Device
>
class
ImageExpandBackward
:
public
ImageExpandFunction
{
public:
void
init
(
const
FuncConfig
&
config
)
override
{
ImageExpandFunction
::
init
(
config
);
}
inline
int
paddingW
()
const
{
return
paddings_
[
1
];
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK_EQ
(
numInputs_
,
inputs
.
size
());
CHECK_EQ
(
numOutputs_
,
outputs
.
size
());
// Since the implementation of Col2ImFunctor is ADD_TO,
// this function only supports ADD_TO mode.
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
const
TensorShape
&
image
=
outputs
[
0
].
shape
();
const
TensorShape
&
sequence
=
inputs
[
0
].
shape
();
check
(
image
,
sequence
);
inline
int
blockH
()
const
{
return
blocks_
[
0
];
}
TensorShape
colShape
=
getColShape
(
image
,
sequence
);
size_t
batchSize
=
image
[
0
];
size_t
inputChannels
=
image
[
1
];
size_t
inputHeight
=
image
[
2
];
size_t
inputWidth
=
image
[
3
];
size_t
seqLength
=
sequence
[
1
];
size_t
stepSize
=
sequence
[
2
];
size_t
outputHeight
=
colShape
[
0
];
size_t
outputWidth
=
colShape
[
1
];
inline
int
blockW
()
const
{
return
blocks_
[
1
];
}
real
*
imageData
=
outputs
[
0
].
data
<
real
>
();
real
*
seqData
=
inputs
[
0
].
data
<
real
>
();
Col2ImFunctor
<
kOCF
,
Device
,
real
>
col2im
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
col2im
(
seqData
,
inputChannels
,
inputHeight
,
inputWidth
,
blockH
(),
blockW
(),
strideH
(),
strideW
(),
paddingH
(),
paddingW
(),
outputHeight
,
outputWidth
,
imageData
);
imageData
+=
inputChannels
*
inputHeight
*
inputWidth
;
seqData
+=
seqLength
*
stepSize
;
}
}
};
REGISTER_TYPED_FUNC
(
ImageExpand
,
CPU
,
ImageExpandFunction
);
REGISTER_TYPED_FUNC
(
ImageExpand
,
CPU
,
ImageExpandForward
);
REGISTER_TYPED_FUNC
(
ImageExpandGrad
,
CPU
,
ImageExpandBackward
);
}
// namespace paddle
paddle/gserver/layers/BlockExpandLayer.cpp
浏览文件 @
2acb84fe
...
...
@@ -47,6 +47,12 @@ bool BlockExpandLayer::init(const LayerMap& layerMap,
.
set
(
"strides"
,
strides
)
.
set
(
"paddings"
,
paddings
)
.
set
(
"blocks"
,
blocks
));
createFunction
(
backward_
,
"ImageExpandGrad"
,
FuncConfig
()
.
set
(
"strides"
,
strides
)
.
set
(
"paddings"
,
paddings
)
.
set
(
"blocks"
,
blocks
));
}
return
true
;
...
...
@@ -126,12 +132,12 @@ void BlockExpandLayer::forward(PassType passType) {
}
start
[
batchSize
]
=
batchSize
*
blockNum
;
if
(
!
useGpu_
)
{
TensorShape
input
Shape
({
batchSize
,
channels_
,
imgSizeH_
,
imgSizeW_
});
TensorShape
output
Shape
({
batchSize
,
blockNum
,
blockSize
});
inputShape_
=
Tensor
Shape
({
batchSize
,
channels_
,
imgSizeH_
,
imgSizeW_
});
outputShape_
=
Tensor
Shape
({
batchSize
,
blockNum
,
blockSize
});
BufferArgs
inputs
;
BufferArgs
outputs
;
inputs
.
addArg
(
*
getInputValue
(
0
),
inputShape
);
outputs
.
addArg
(
*
getOutputValue
(),
outputShape
,
ASSIGN_TO
);
inputs
.
addArg
(
*
getInputValue
(
0
),
inputShape
_
);
outputs
.
addArg
(
*
getOutputValue
(),
outputShape
_
,
ASSIGN_TO
);
forward_
[
0
]
->
calc
(
inputs
,
outputs
);
}
}
...
...
@@ -144,41 +150,50 @@ void BlockExpandLayer::backward(const UpdateCallback& callback) {
if
(
!
preGrad
)
{
return
;
}
MatrixPtr
grad
=
getOutputGrad
();
MatrixPtr
gradTrans
=
Matrix
::
create
(
blockSize
,
blockNum
,
false
,
useGpu_
);
size_t
batchSize
=
preGrad
->
getHeight
();
CHECK_EQ
(
batchSize
*
blockNum
,
grad
->
getHeight
());
CHECK_EQ
(
blockSize
,
grad
->
getWidth
());
if
(
useGpu_
)
{
MatrixPtr
grad
=
getOutputGrad
();
MatrixPtr
gradTrans
=
Matrix
::
create
(
blockSize
,
blockNum
,
false
,
useGpu_
);
size_t
batchSize
=
preGrad
->
getHeight
();
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
gradTmp
=
Matrix
::
create
(
grad
->
getData
()
+
i
*
blockNum
*
blockSize
,
blockNum
,
blockSize
,
false
,
useGpu_
);
gradTmp
->
transpose
(
gradTrans
,
false
);
MatrixPtr
preGradTmp
=
Matrix
::
create
(
preGrad
->
getData
()
+
i
*
preGrad
->
getWidth
(),
1
,
preGrad
->
getWidth
(),
false
,
useGpu_
);
preGradTmp
->
convShrink
(
*
gradTrans
,
imgSizeH_
,
imgSizeW_
,
channels_
,
blockH_
,
blockW_
,
strideH_
,
strideW_
,
paddingH_
,
paddingW_
,
outputH_
,
outputW_
,
1.0
,
1.0
);
CHECK_EQ
(
batchSize
*
blockNum
,
grad
->
getHeight
());
CHECK_EQ
(
blockSize
,
grad
->
getWidth
());
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
gradTmp
=
Matrix
::
create
(
grad
->
getData
()
+
i
*
blockNum
*
blockSize
,
blockNum
,
blockSize
,
false
,
useGpu_
);
gradTmp
->
transpose
(
gradTrans
,
false
);
MatrixPtr
preGradTmp
=
Matrix
::
create
(
preGrad
->
getData
()
+
i
*
preGrad
->
getWidth
(),
1
,
preGrad
->
getWidth
(),
false
,
useGpu_
);
preGradTmp
->
convShrink
(
*
gradTrans
,
imgSizeH_
,
imgSizeW_
,
channels_
,
blockH_
,
blockW_
,
strideH_
,
strideW_
,
paddingH_
,
paddingW_
,
outputH_
,
outputW_
,
1.0
,
1.0
);
}
}
else
{
BufferArgs
inputs
;
BufferArgs
outputs
;
inputs
.
addArg
(
*
getOutputGrad
(),
outputShape_
);
outputs
.
addArg
(
*
getInputGrad
(
0
),
inputShape_
,
ADD_TO
);
backward_
[
0
]
->
calc
(
inputs
,
outputs
);
}
}
...
...
paddle/gserver/layers/BlockExpandLayer.h
浏览文件 @
2acb84fe
...
...
@@ -53,6 +53,9 @@ protected:
/// auxiliary variable, which saves the transposed output value.
MatrixPtr
outVTrans_
;
TensorShape
inputShape_
;
TensorShape
outputShape_
;
public:
explicit
BlockExpandLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录