Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2ac8e6a5
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
2ac8e6a5
编写于
4月 28, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Try to remove ParallelParameter.
It seems that is not used.
上级
5d7fabd3
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
3 addition
and
530 deletion
+3
-530
paddle/gserver/layers/Layer.h
paddle/gserver/layers/Layer.h
+3
-5
paddle/parameter/ParallelParameter.cpp
paddle/parameter/ParallelParameter.cpp
+0
-209
paddle/parameter/ParallelParameter.h
paddle/parameter/ParallelParameter.h
+0
-244
paddle/parameter/Parameter.cpp
paddle/parameter/Parameter.cpp
+0
-49
paddle/parameter/Parameter.h
paddle/parameter/Parameter.h
+0
-23
未找到文件。
paddle/gserver/layers/Layer.h
浏览文件 @
2ac8e6a5
...
@@ -14,20 +14,18 @@ limitations under the License. */
...
@@ -14,20 +14,18 @@ limitations under the License. */
#pragma once
#pragma once
#include <paddle/parameter/Argument.h>
#include <functional>
#include <functional>
#include <memory>
#include <memory>
#include "ModelConfig.pb.h"
#include "ModelConfig.pb.h"
#include "paddle/function/Function.h"
#include "paddle/function/Function.h"
#include "paddle/gserver/activations/ActivationFunction.h"
#include "paddle/math/CpuSparseMatrix.h"
#include "paddle/math/CpuSparseMatrix.h"
#include "paddle/parameter/Argument.h"
#include "paddle/parameter/Parameter.h"
#include "paddle/parameter/Parameter.h"
#include "paddle/parameter/Weight.h"
#include "paddle/utils/ClassRegistrar.h"
#include "paddle/utils/ClassRegistrar.h"
#include "paddle/utils/Util.h"
#include "paddle/utils/Util.h"
#include <paddle/parameter/ParallelParameter.h>
#include <paddle/parameter/Weight.h>
#include "paddle/gserver/activations/ActivationFunction.h"
/// Macro for registering a layer type.
/// Macro for registering a layer type.
/// Example: REGISTER_LAYER(crf_error, CRFDecodingErrorLayer);
/// Example: REGISTER_LAYER(crf_error, CRFDecodingErrorLayer);
#define REGISTER_LAYER(__type_name, __class_name) \
#define REGISTER_LAYER(__type_name, __class_name) \
...
...
paddle/parameter/ParallelParameter.cpp
已删除
100644 → 0
浏览文件 @
5d7fabd3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include "paddle/utils/Logging.h"
#include "ParallelParameter.h"
namespace
paddle
{
UpdateFunction
paramUpdateFunctions
[
UPDATE_TYPE_NUM
]
=
{
nullptr
,
// &ParallelParameter::singleUpdate, /* single thread */
nullptr
,
// &ParallelParameter::controlUpdate, /* controller thread */
&
ParallelParameter
::
majorUpdate
,
/* major thread */
&
ParallelParameter
::
minorUpdate
,
/* minor thread */
nullptr
,
/* master */
&
ParallelParameter
::
slaveUpdate
,
/* slave */
};
ParallelParameterPtr
ParallelParameter
::
create
(
TrainerRole
role
,
ParameterPtr
localParam
,
int
asyncCount
)
{
ParallelParameterPtr
ptr
=
nullptr
;
switch
(
role
)
{
case
TRAINER_ROLE_CONTROL
:
case
TRAINER_ROLE_MAJOR
:
case
TRAINER_ROLE_MINOR
:
ptr
=
std
::
make_shared
<
SyncParameter
>
(
role
,
localParam
);
break
;
case
TRAINER_ROLE_MASTER
:
case
TRAINER_ROLE_SLAVE
:
ptr
=
std
::
make_shared
<
AsyncParameter
>
(
role
,
asyncCount
,
localParam
);
break
;
default:
LOG
(
FATAL
)
<<
"unknown role "
<<
role
<<
"
\n
"
;
}
return
ptr
;
}
void
ParallelParameter
::
syncUpdate
(
TrainerRole
role
,
real
learnRate
)
{
if
(
paramUpdateFunctions
[
role
])
{
(
this
->*
paramUpdateFunctions
[
role
])(
learnRate
);
}
}
void
SyncParameter
::
attachControlParam
(
ParallelParameterPtr
controler
)
{
controlParam_
=
controler
;
}
void
SyncParameter
::
attachMajorParam
(
ParallelParameterPtr
partner
)
{
majorPartners_
.
push_back
(
partner
);
if
(
role_
==
TRAINER_ROLE_CONTROL
)
{
localParam_
->
setSharedCount
(
majorPartners_
.
size
());
}
// partnerParam_ = partner;
}
void
SyncParameter
::
attachMinorParam
(
ParallelParameterPtr
partner
,
int
deviceId
)
{
minorPartners_
.
push_back
(
partner
);
minorDeviceIds_
.
push_back
(
deviceId
);
// partnerParam_ = partner;
}
void
SyncParameter
::
waitAllMajorGradReady
()
{
for
(
size_t
i
=
0
;
i
<
majorPartners_
.
size
();
i
++
)
{
majorPartners_
[
i
]
->
waitGradReady
();
partnerParam_
=
majorPartners_
[
i
]
->
getLocalParameter
();
VectorPtr
localGrad
=
localParam_
->
getBuf
(
PARAMETER_GRADIENT
);
VectorPtr
patnrGrad
=
partnerParam_
->
getBuf
(
PARAMETER_GRADIENT
);
if
(
FLAGS_use_gpu
)
hl_set_device
(
minorDeviceIds_
[
i
]);
localGrad
->
add
(
*
patnrGrad
);
}
}
void
SyncParameter
::
synchronizeParamter
()
{
valueSem_
->
wait
();
if
(
role_
==
TRAINER_ROLE_MINOR
)
{
/* copy the value from controller */
VectorPtr
cntrlVec
=
(
controlParam_
->
getLocalParameter
())
->
getBuf
(
PARAMETER_VALUE
);
VectorPtr
localVec
=
localParam_
->
getBuf
(
PARAMETER_VALUE
);
localVec
->
copyFrom
(
*
cntrlVec
);
/* dispatch the value to major */
for
(
size_t
i
=
0
;
i
<
majorPartners_
.
size
();
i
++
)
{
VectorPtr
majorVec
=
(
majorPartners_
[
i
]
->
getLocalParameter
())
->
getBuf
(
PARAMETER_VALUE
);
majorVec
->
copyFrom
(
*
localVec
);
majorPartners_
[
i
]
->
postValueReady
();
}
}
}
void
SyncParameter
::
singleUpdate
(
real
learnRate
)
{
CHECK
(
role_
==
TRAINER_ROLE_SINGLE
);
localParam_
->
updateWithGradient
(
learnRate
);
}
void
SyncParameter
::
controlUpdate
(
const
UpdateCallback
&
callBack
)
{
CHECK
(
role_
==
TRAINER_ROLE_CONTROL
);
CHECK
(
gradSem_
!=
NULL
&&
valueSem_
!=
NULL
);
CHECK
(
majorPartners_
.
size
());
/* update */
if
(
callBack
)
{
callBack
(
localParam_
.
get
());
localParam_
->
clearGradient
();
}
for
(
size_t
i
=
0
;
i
<
minorPartners_
.
size
();
i
++
)
{
minorPartners_
[
i
]
->
postValueReady
();
}
}
void
SyncParameter
::
majorUpdate
(
real
learnRate
)
{
(
void
)
learnRate
;
CHECK
(
role_
==
TRAINER_ROLE_MAJOR
);
CHECK
(
gradSem_
!=
NULL
&&
valueSem_
!=
NULL
);
CHECK
(
minorPartners_
.
size
()
&&
controlParam_
);
/* wait the minor-Gradient is ready */
for
(
size_t
i
=
0
;
i
<
minorPartners_
.
size
();
i
++
)
{
minorPartners_
[
i
]
->
waitGradReady
();
partnerParam_
=
minorPartners_
[
i
]
->
getLocalParameter
();
VectorPtr
localGrad
=
localParam_
->
getBuf
(
PARAMETER_GRADIENT
);
VectorPtr
minorGrad
=
partnerParam_
->
getBuf
(
PARAMETER_GRADIENT
);
localGrad
->
add
(
*
minorGrad
);
}
/* notice the controller that the gradient is ready */
gradSem_
->
post
();
}
void
SyncParameter
::
minorUpdate
(
real
learnRate
)
{
(
void
)
learnRate
;
CHECK
(
role_
==
TRAINER_ROLE_MINOR
);
CHECK
(
gradSem_
!=
NULL
&&
valueSem_
!=
NULL
);
// notice the major that the gradient is ready
gradSem_
->
post
();
}
AsyncParameter
::
AsyncParameter
(
TrainerRole
role
,
int
asyncCount
,
ParameterPtr
localParam
)
:
ParallelParameter
(
role
,
localParam
)
{
asyncCount_
=
asyncCount
;
accumCounter_
=
0
;
gradientAccum_
=
Vector
::
create
(
localParam
->
getSize
(),
localParam
->
useGpu
());
gradientAccum_
->
zeroMem
();
}
void
AsyncParameter
::
slaveUpdate
(
real
learnRate
)
{
/* increase the accumCounter_ */
accumCounter_
++
;
/* accumulate the gradient to the buffer */
VectorPtr
grad
=
localParam_
->
getBuf
(
PARAMETER_GRADIENT
);
gradientAccum_
->
add
(
*
grad
);
/* if need to be synchronized with the master */
if
(
accumCounter_
==
asyncCount_
)
{
gradSem_
->
post
();
// accumCounter_ = 0; NOTICE: the upper-function need to reset the counter
}
else
{
// self update
localParam_
->
updateWithGradient
(
learnRate
);
}
localParam_
->
clearGradient
();
}
bool
AsyncParameter
::
masterUpdate
(
ParallelParameterPtr
slaveParam
,
const
UpdateCallback
&
callback
)
{
CHECK
(
slaveParam
&&
callback
);
/* wait the slave is ready */
if
(
!
slaveParam
->
timeWaitGradReady
(
5
))
{
return
false
;
}
AsyncParameter
*
asyncParam
=
dynamic_cast
<
AsyncParameter
*>
(
slaveParam
.
get
());
/* get the accum-gradient to update local parameter */
VectorPtr
slaveVec
=
asyncParam
->
getAccum
();
localParam_
->
getBuf
(
PARAMETER_GRADIENT
)
->
copyFrom
(
*
slaveVec
);
callback
(
localParam_
.
get
());
// slaveVec->zeroMem();
/* copy the newest parameter-value to the slave */
slaveVec
=
(
slaveParam
->
getLocalParameter
())
->
getBuf
(
PARAMETER_VALUE
);
slaveVec
->
copyFrom
(
*
(
localParam_
->
getBuf
(
PARAMETER_VALUE
)));
/* release the semphore */
slaveParam
->
postValueReady
();
return
true
;
}
}
// namespace paddle
paddle/parameter/ParallelParameter.h
已删除
100644 → 0
浏览文件 @
5d7fabd3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stdint.h>
#include <sys/time.h>
#include <unistd.h>
#include <iostream>
#include <string>
#include <vector>
#include "hl_gpu.h"
#include "paddle/math/Vector.h"
#include "paddle/parameter/Parameter.h"
#include "paddle/parameter/ParameterUpdateFunctions.h"
#include "paddle/utils/Common.h"
#include "paddle/utils/Flags.h"
#include "paddle/utils/Locks.h"
#include "ParameterConfig.pb.h"
namespace
paddle
{
class
ParallelParameter
;
class
SyncParameter
;
class
AsyncParameter
;
typedef
std
::
shared_ptr
<
ParallelParameter
>
ParallelParameterPtr
;
const
int
UPDATE_TYPE_NUM
=
32
;
/**
* TrainRole denotes the role of current training, different roles have
* different jobs.
*
* control, major, minor are three kinds of role to support mutiple GPUs
* parallel SGD training. SM on GPU card has two groups, each group
* consist of a major and a minor.
*
* @param single single GPU card single thread training.
*
*
* @param control current parameter updates via control role,
* not participate in real training. control role is
* responsible for merging all major's gradient and
* update parameter value.
*
* @param major major role paticipates in real training, when local
* gradient is ready, merge its corresponding minor's
* gradient and notify controller: this group's gradient
* is already ready.
*
* @param minor minor role participates in real training, when local
* gradient is ready, only notify its corresponding major.
* In order to maximum apportion jobs, after controller
* updates the paramemter value, each group's minior
* reponses to dispatch the latest model into local and
* major.
*/
enum
TrainerRole
{
TRAINER_ROLE_SINGLE
,
TRAINER_ROLE_CONTROL
,
TRAINER_ROLE_MAJOR
,
TRAINER_ROLE_MINOR
,
TRAINER_ROLE_MASTER
,
TRAINER_ROLE_SLAVE
};
typedef
void
(
ParallelParameter
::*
UpdateFunction
)(
real
learnRate
);
class
ParallelParameter
{
public:
static
ParallelParameterPtr
create
(
TrainerRole
role
,
ParameterPtr
localParam
,
int
asyncCount
=
1
);
ParallelParameter
(
TrainerRole
role
,
ParameterPtr
localParam
)
{
role_
=
role
;
gradSem_
.
reset
(
new
Semaphore
(
0
));
valueSem_
.
reset
(
new
Semaphore
(
0
));
localParam_
=
localParam
;
}
virtual
~
ParallelParameter
()
{}
ParameterPtr
getLocalParameter
()
{
return
localParam_
;
}
bool
timeWaitGradReady
(
int
sec
)
{
struct
timespec
ts
;
ts
.
tv_nsec
=
0
;
ts
.
tv_sec
=
time
(
NULL
)
+
sec
;
return
gradSem_
->
timeWait
(
&
ts
);
}
void
waitGradReady
()
{
gradSem_
->
wait
();
}
void
postValueReady
()
{
valueSem_
->
post
();
}
void
syncUpdate
(
TrainerRole
role
,
real
learnRate
);
virtual
void
synchronizeParamter
()
=
0
;
/**
* for synchronous
*/
virtual
void
singleUpdate
(
real
learnRate
)
{
(
void
)
learnRate
;
}
virtual
void
controlUpdate
(
const
UpdateCallback
&
callback
)
{
(
void
)
callback
;
}
virtual
void
majorUpdate
(
real
learnRate
)
{
(
void
)
learnRate
;
}
virtual
void
minorUpdate
(
real
learnRate
)
{
(
void
)
learnRate
;
}
/**
* for asynchronous
*/
virtual
void
slaveUpdate
(
real
learnRate
)
{
(
void
)
learnRate
;
}
protected:
TrainerRole
role_
;
ParameterPtr
localParam_
;
std
::
unique_ptr
<
Semaphore
>
gradSem_
;
/// wether the local parameter-gradient is ready
std
::
unique_ptr
<
Semaphore
>
valueSem_
;
/// wether the local parameter-value is updated
};
/**
* this class is designed for multi-threading training.
*
* "Synchronous" means multiple GPUs calculate 1/4 mini-Batch,
* but will get only one gradient
*/
class
SyncParameter
:
public
ParallelParameter
{
public:
SyncParameter
(
TrainerRole
role
,
ParameterPtr
localParam
)
:
ParallelParameter
(
role
,
localParam
)
{
controlParam_
=
nullptr
;
majorPartners_
.
clear
();
minorPartners_
.
clear
();
}
~
SyncParameter
()
{
majorPartners_
.
clear
();
minorPartners_
.
clear
();
}
void
attachControlParam
(
ParallelParameterPtr
controler
);
void
attachMajorParam
(
ParallelParameterPtr
partner
);
void
attachMinorParam
(
ParallelParameterPtr
partner
,
int
deviceId
);
void
waitAllMajorGradReady
();
void
synchronizeParamter
();
void
singleUpdate
(
real
learnRate
);
void
controlUpdate
(
const
UpdateCallback
&
callback
);
void
majorUpdate
(
real
learnRate
);
void
minorUpdate
(
real
learnRate
);
std
::
vector
<
ParallelParameterPtr
>&
getMajorPartners
()
{
return
majorPartners_
;
}
std
::
vector
<
ParallelParameterPtr
>&
getMinorPartners
()
{
return
minorPartners_
;
}
private:
// The following variables are used in a multithreaded training situation
// partnerParam_ is local-parameter's partner
// controlParam_ is the controller-thread 's parameter
ParameterPtr
partnerParam_
;
std
::
vector
<
ParallelParameterPtr
>
majorPartners_
;
std
::
vector
<
ParallelParameterPtr
>
minorPartners_
;
std
::
vector
<
int
>
minorDeviceIds_
;
ParallelParameterPtr
controlParam_
;
};
class
AsyncParameter
:
public
ParallelParameter
{
public:
AsyncParameter
(
TrainerRole
role
,
int
asyncCount
,
ParameterPtr
localParam
);
void
clearCounter
()
{
accumCounter_
=
0
;
}
VectorPtr
getAccum
()
{
return
gradientAccum_
;
}
void
synchronizeParamter
()
{
if
(
accumCounter_
==
asyncCount_
)
{
valueSem_
->
wait
();
clearCounter
();
gradientAccum_
->
zeroMem
();
}
}
/**
* When asynchronous training, update strategy including slave and master.
*
* slave: If in range asyncCount, adopting self-update method.
* If beyond asyncCount, waiting for master to update.
*/
void
slaveUpdate
(
real
learnRate
);
/**
* When asynchronous training, update strategy including slave and master.
*
* master: it only polls slaves, do not training data.
* If slave's gradient is ready, fetch it.
* Update master's parameter, then copy it into
* corresponding slave.
*/
bool
masterUpdate
(
ParallelParameterPtr
slaveParam
,
const
UpdateCallback
&
callback
);
private:
/**
* When asynchronous training, every aysnc trainer needs to
* accumulate a number of batch gradient.
*
* gradientAccum_ is used to save the sum of gradients.
*/
VectorPtr
gradientAccum_
;
/// Asynchronous count.
int
asyncCount_
;
/// Accumulate counter of current gradients.
int
accumCounter_
;
};
typedef
std
::
map
<
std
::
string
,
ParallelParameterPtr
>
ParallelParameterMap
;
}
// namespace paddle
paddle/parameter/Parameter.cpp
浏览文件 @
2ac8e6a5
...
@@ -271,55 +271,6 @@ SparsePrefetchRowCpuMatrix* Parameter::getPrefetchMatrix() {
...
@@ -271,55 +271,6 @@ SparsePrefetchRowCpuMatrix* Parameter::getPrefetchMatrix() {
return
nullptr
;
return
nullptr
;
}
}
void
Parameter
::
updateWithGradient
(
real
learningRate
)
{
sgdUpdate
(
learningRate
*
config_
.
learning_rate
(),
config_
.
momentum
(),
config_
.
decay_rate
(),
bufs_
[
PARAMETER_VALUE
].
get
(),
bufs_
[
PARAMETER_GRADIENT
].
get
(),
bufs_
[
PARAMETER_MOMENTUM
].
get
());
}
void
Parameter
::
updateWithGradient
(
real
learningRate
,
MatrixPtr
gradMat
,
IVectorPtr
t0
,
int
currentTime
,
bool
fini
)
{
SparseRowCpuMatrix
*
sparseMat
=
dynamic_cast
<
SparseRowCpuMatrix
*>
(
gradMat
.
get
());
CHECK
(
sparseMat
);
CHECK_EQ
(
config_
.
momentum
(),
0.0
f
)
<<
"not support momentum in sparse input sgd"
;
bool
useL1
=
(
config_
.
decay_rate_l1
()
!=
0.0
f
);
sparseMat
->
sgdUpdate
(
*
bufs_
[
PARAMETER_VALUE
],
*
t0
,
learningRate
*
config_
.
learning_rate
(),
currentTime
,
useL1
?
config_
.
decay_rate_l1
()
:
config_
.
decay_rate
(),
useL1
,
fini
);
}
void
Parameter
::
updateWithGradient
(
real
learningRate
,
VectorPtr
gradVec
,
bool
normalUpdate
)
{
if
(
normalUpdate
)
{
sgdUpdate
(
learningRate
*
config_
.
learning_rate
(),
config_
.
momentum
(),
config_
.
decay_rate
(),
bufs_
[
PARAMETER_VALUE
].
get
(),
gradVec
.
get
(),
bufs_
[
PARAMETER_MOMENTUM
].
get
());
}
else
{
size_t
size
=
gradVec
->
getSize
();
real
*
mom
=
bufs_
[
PARAMETER_MOMENTUM
]
->
getData
();
real
*
grad
=
gradVec
->
getData
();
real
*
value
=
bufs_
[
PARAMETER_VALUE
]
->
getData
();
hl_matrix_add
(
mom
,
grad
,
mom
,
1
,
size
,
1.0
f
,
learningRate
);
hl_matrix_add
(
value
,
grad
,
value
,
1
,
size
,
1.0
f
,
learningRate
);
}
}
void
Parameter
::
incUpdate
(
const
UpdateCallback
&
callback
)
{
void
Parameter
::
incUpdate
(
const
UpdateCallback
&
callback
)
{
// Static parameter is fixed, and does not need to be updated
// Static parameter is fixed, and does not need to be updated
if
(
isStatic
())
{
if
(
isStatic
())
{
...
...
paddle/parameter/Parameter.h
浏览文件 @
2ac8e6a5
...
@@ -223,29 +223,6 @@ public:
...
@@ -223,29 +223,6 @@ public:
bool
isValueUpdated
()
const
{
return
updated_
;
}
bool
isValueUpdated
()
const
{
return
updated_
;
}
/**
* Update bufs_[PARAMETER_VALUE] using bufs_[PARAMETER_GRADIENT]
*/
void
updateWithGradient
(
real
learningRate
);
/**
* Update bufs_[PARAMETER_VALUE] using sparse row grad matrix.
*
* @see SparseRowCpuMatrix::sgdUpdate for more information.
*/
void
updateWithGradient
(
real
learningRate
,
MatrixPtr
gradMat
,
IVectorPtr
t0
,
int
currentTime
,
bool
fini
=
false
);
/**
* This function is used to calculate multiple gpus, but only as a candidate
*/
void
updateWithGradient
(
real
learningRate
,
VectorPtr
grad
,
bool
normalUpdate
=
true
);
/**
/**
* Save parameter value to a file
* Save parameter value to a file
*/
*/
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录