未验证 提交 2a494247 编写于 作者: C cnn 提交者: GitHub

remove duplicate code (#2580)

上级 e3d703d7
...@@ -33,7 +33,7 @@ S2ANetHead: ...@@ -33,7 +33,7 @@ S2ANetHead:
feat_in: 256 feat_in: 256
feat_out: 256 feat_out: 256
num_classes: 15 num_classes: 15
align_conv_type: 'AlignConv' # AlignConv Conv align_conv_type: 'Conv' # AlignConv Conv
align_conv_size: 3 align_conv_size: 3
use_sigmoid_cls: True use_sigmoid_cls: True
...@@ -51,3 +51,5 @@ S2ANetBBoxPostProcess: ...@@ -51,3 +51,5 @@ S2ANetBBoxPostProcess:
keep_top_k: -1 keep_top_k: -1
score_threshold: 0.05 score_threshold: 0.05
nms_threshold: 0.1 nms_threshold: 0.1
normalized: False
#background_label: -1
_BASE_: [ _BASE_: [
'../datasets/dota_debug.yml', '../datasets/dota.yml',
'../runtime.yml', '../runtime.yml',
'_base_/s2anet_optimizer_1x.yml', '_base_/s2anet_optimizer_1x.yml',
'_base_/s2anet.yml', '_base_/s2anet.yml',
'_base_/s2anet_reader.yml', '_base_/s2anet_reader.yml',
] ]
weights: output/s2anet_1x_dota/model_final weights: output/s2anet_1x_dota/model_final
S2ANetHead: S2ANetHead:
anchor_strides: [ 8, 16, 32, 64, 128 ] anchor_strides: [8, 16, 32, 64, 128]
anchor_scales: [ 4 ] anchor_scales: [4]
anchor_ratios: [ 1.0 ] anchor_ratios: [1.0]
anchor_assign: RBoxAssigner anchor_assign: RBoxAssigner
stacked_convs: 2 stacked_convs: 2
feat_in: 256 feat_in: 256
......
...@@ -752,50 +752,6 @@ class RboxPadBatch(BaseOperator): ...@@ -752,50 +752,6 @@ class RboxPadBatch(BaseOperator):
self.pad_to_stride = pad_to_stride self.pad_to_stride = pad_to_stride
self.pad_gt = pad_gt self.pad_gt = pad_gt
def poly_to_rbox(self, polys):
"""
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
to
rotated_boxes:[x_ctr,y_ctr,w,h,angle]
"""
rotated_boxes = []
for poly in polys:
poly = np.array(poly[:8], dtype=np.float32)
pt1 = (poly[0], poly[1])
pt2 = (poly[2], poly[3])
pt3 = (poly[4], poly[5])
pt4 = (poly[6], poly[7])
edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[
1] - pt2[1]) * (pt1[1] - pt2[1]))
edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[
1] - pt3[1]) * (pt2[1] - pt3[1]))
width = max(edge1, edge2)
height = min(edge1, edge2)
angle = 0
if edge1 > edge2:
angle = np.arctan2(
np.float(pt2[1] - pt1[1]), np.float(pt2[0] - pt1[0]))
elif edge2 >= edge1:
angle = np.arctan2(
np.float(pt4[1] - pt1[1]), np.float(pt4[0] - pt1[0]))
def norm_angle(angle, range=[-np.pi / 4, np.pi]):
return (angle - range[0]) % range[1] + range[0]
angle = norm_angle(angle)
x_ctr = np.float(pt1[0] + pt3[0]) / 2.0
y_ctr = np.float(pt1[1] + pt3[1]) / 2.0
rotated_box = np.array([x_ctr, y_ctr, width, height, angle])
rotated_boxes.append(rotated_box)
ret_rotated_boxes = np.array(rotated_boxes)
assert ret_rotated_boxes.shape[1] == 5
return ret_rotated_boxes
def __call__(self, samples, context=None): def __call__(self, samples, context=None):
""" """
Args: Args:
...@@ -883,7 +839,7 @@ class RboxPadBatch(BaseOperator): ...@@ -883,7 +839,7 @@ class RboxPadBatch(BaseOperator):
sample['is_crowd'] = is_crowd_data sample['is_crowd'] = is_crowd_data
# ploy to rbox # ploy to rbox
polys = sample['gt_rbox2poly'] polys = sample['gt_rbox2poly']
rbox = self.poly_to_rbox(polys) rbox = bbox_utils.poly_to_rbox(polys)
sample['gt_rbox'] = rbox sample['gt_rbox'] = rbox
return samples return samples
...@@ -541,10 +541,11 @@ class RandomFlip(BaseOperator): ...@@ -541,10 +541,11 @@ class RandomFlip(BaseOperator):
oldx2 = bbox[:, 2].copy() oldx2 = bbox[:, 2].copy()
oldx3 = bbox[:, 4].copy() oldx3 = bbox[:, 4].copy()
oldx4 = bbox[:, 6].copy() oldx4 = bbox[:, 6].copy()
bbox[:, 0] = width - oldx2 bbox[:, 0] = width - oldx1
bbox[:, 2] = width - oldx1 bbox[:, 2] = width - oldx2
bbox[:, 4] = width - oldx3 bbox[:, 4] = width - oldx3
bbox[:, 6] = width - oldx4 bbox[:, 6] = width - oldx4
bbox = [bbox_utils.get_best_begin_point_single(e) for e in bbox]
return bbox return bbox
def apply(self, sample, context=None): def apply(self, sample, context=None):
...@@ -579,7 +580,7 @@ class RandomFlip(BaseOperator): ...@@ -579,7 +580,7 @@ class RandomFlip(BaseOperator):
sample['gt_segm'] = sample['gt_segm'][:, :, ::-1] sample['gt_segm'] = sample['gt_segm'][:, :, ::-1]
if 'gt_rbox2poly' in sample and sample['gt_rbox2poly'].any(): if 'gt_rbox2poly' in sample and sample['gt_rbox2poly'].any():
sample['gt_rbox2poly'] = self.apply_bbox(sample['gt_rbox2poly'], sample['gt_rbox2poly'] = self.apply_rbox(sample['gt_rbox2poly'],
width) width)
sample['flipped'] = True sample['flipped'] = True
...@@ -1973,99 +1974,16 @@ class Rbox2Poly(BaseOperator): ...@@ -1973,99 +1974,16 @@ class Rbox2Poly(BaseOperator):
def apply(self, sample, context=None): def apply(self, sample, context=None):
assert 'gt_rbox' in sample assert 'gt_rbox' in sample
assert sample['gt_rbox'].shape[1] == 5 assert sample['gt_rbox'].shape[1] == 5
rrect = sample['gt_rbox'] rrects = sample['gt_rbox']
bbox_num = rrect.shape[0] x_ctr = rrects[:, 0]
x_ctr = rrect[:, 0] y_ctr = rrects[:, 1]
y_ctr = rrect[:, 1] width = rrects[:, 2]
width = rrect[:, 2] height = rrects[:, 3]
height = rrect[:, 3]
angle = rrect[:, 4]
tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
# rect 2x4
rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
R = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])
poly = []
for i in range(R.shape[2]):
tmp_r = R[:, :, i].reshape(2, 2)
poly.append(tmp_r.dot(rect[:, :, i]))
# poly:[M, 2, 4]
poly = np.array(poly)
coor_x = poly[:, 0, :4] + x_ctr.reshape(bbox_num, 1)
coor_y = poly[:, 1, :4] + y_ctr.reshape(bbox_num, 1)
poly = np.stack(
[
coor_x[:, 0], coor_y[:, 0], coor_x[:, 1], coor_y[:, 1],
coor_x[:, 2], coor_y[:, 2], coor_x[:, 3], coor_y[:, 3]
],
axis=1)
x1 = x_ctr - width / 2.0 x1 = x_ctr - width / 2.0
y1 = y_ctr - height / 2.0 y1 = y_ctr - height / 2.0
x2 = x_ctr + width / 2.0 x2 = x_ctr + width / 2.0
y2 = y_ctr + height / 2.0 y2 = y_ctr + height / 2.0
sample['gt_bbox'] = np.stack([x1, y1, x2, y2], axis=1) sample['gt_bbox'] = np.stack([x1, y1, x2, y2], axis=1)
sample['gt_rbox2poly'] = poly polys = bbox_utils.rbox2poly(rrects)
return sample sample['gt_rbox2poly'] = polys
@register_op
class Poly2Rbox(BaseOperator):
"""
Convert poly format to rbbox format.
"""
def __init__(self):
super(Poly2Rbox, self).__init__()
def poly_to_rbox(self, polys):
"""
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
to
rotated_boxes:[x_ctr,y_ctr,w,h,angle]
"""
rotated_boxes = []
for poly in polys:
poly = np.array(poly[:8], dtype=np.float32)
pt1 = (poly[0], poly[1])
pt2 = (poly[2], poly[3])
pt3 = (poly[4], poly[5])
pt4 = (poly[6], poly[7])
edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[
1] - pt2[1]) * (pt1[1] - pt2[1]))
edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[
1] - pt3[1]) * (pt2[1] - pt3[1]))
width = max(edge1, edge2)
height = min(edge1, edge2)
angle = 0
if edge1 > edge2:
angle = np.arctan2(
np.float(pt2[1] - pt1[1]), np.float(pt2[0] - pt1[0]))
elif edge2 >= edge1:
angle = np.arctan2(
np.float(pt4[1] - pt1[1]), np.float(pt4[0] - pt1[0]))
def norm_angle(angle, range=[-np.pi / 4, np.pi]):
return (angle - range[0]) % range[1] + range[0]
angle = norm_angle(angle)
x_ctr = np.float(pt1[0] + pt3[0]) / 2
y_ctr = np.float(pt1[1] + pt3[1]) / 2
rotated_box = np.array([x_ctr, y_ctr, width, height, angle])
rotated_boxes.append(rotated_box)
ret_rotated_boxes = np.array(rotated_boxes)
assert ret_rotated_boxes.shape[1] == 5
return ret_rotated_boxes
def apply(self, sample, context=None):
assert 'gt_rbox2poly' in sample
poly = sample['gt_rbox2poly']
rbox = self.poly_to_rbox(poly)
sample['gt_rbox'] = rbox
return sample return sample
...@@ -404,4 +404,125 @@ def bbox_decode(bbox_preds, ...@@ -404,4 +404,125 @@ def bbox_decode(bbox_preds,
anchors, bbox_delta, means, stds, wh_ratio_clip=1e-6) anchors, bbox_delta, means, stds, wh_ratio_clip=1e-6)
bboxes = paddle.reshape(bboxes, [H, W, 5]) bboxes = paddle.reshape(bboxes, [H, W, 5])
bboxes_list.append(bboxes) bboxes_list.append(bboxes)
return paddle.stack(bboxes_list, axis=0) return paddle.stack(bboxes_list, axis=0)
\ No newline at end of file
def poly_to_rbox(polys):
"""
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
to
rotated_boxes:[x_ctr,y_ctr,w,h,angle]
"""
rotated_boxes = []
for poly in polys:
poly = np.array(poly[:8], dtype=np.float32)
pt1 = (poly[0], poly[1])
pt2 = (poly[2], poly[3])
pt3 = (poly[4], poly[5])
pt4 = (poly[6], poly[7])
edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[1] - pt2[
1]) * (pt1[1] - pt2[1]))
edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[1] - pt3[
1]) * (pt2[1] - pt3[1]))
width = max(edge1, edge2)
height = min(edge1, edge2)
rbox_angle = 0
if edge1 > edge2:
rbox_angle = np.arctan2(
np.float(pt2[1] - pt1[1]), np.float(pt2[0] - pt1[0]))
elif edge2 >= edge1:
rbox_angle = np.arctan2(
np.float(pt4[1] - pt1[1]), np.float(pt4[0] - pt1[0]))
def norm_angle(angle, range=[-np.pi / 4, np.pi]):
return (angle - range[0]) % range[1] + range[0]
rbox_angle = norm_angle(rbox_angle)
x_ctr = np.float(pt1[0] + pt3[0]) / 2
y_ctr = np.float(pt1[1] + pt3[1]) / 2
rotated_box = np.array([x_ctr, y_ctr, width, height, rbox_angle])
rotated_boxes.append(rotated_box)
ret_rotated_boxes = np.array(rotated_boxes)
assert ret_rotated_boxes.shape[1] == 5
return ret_rotated_boxes
def cal_line_length(point1, point2):
import math
return math.sqrt(
math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1], 2))
def get_best_begin_point_single(coordinate):
x1, y1, x2, y2, x3, y3, x4, y4 = coordinate
xmin = min(x1, x2, x3, x4)
ymin = min(y1, y2, y3, y4)
xmax = max(x1, x2, x3, x4)
ymax = max(y1, y2, y3, y4)
combinate = [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]],
[[x4, y4], [x1, y1], [x2, y2], [x3, y3]],
[[x3, y3], [x4, y4], [x1, y1], [x2, y2]],
[[x2, y2], [x3, y3], [x4, y4], [x1, y1]]]
dst_coordinate = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]
force = 100000000.0
force_flag = 0
for i in range(4):
temp_force = cal_line_length(combinate[i][0], dst_coordinate[0]) \
+ cal_line_length(combinate[i][1], dst_coordinate[1]) \
+ cal_line_length(combinate[i][2], dst_coordinate[2]) \
+ cal_line_length(combinate[i][3], dst_coordinate[3])
if temp_force < force:
force = temp_force
force_flag = i
if force_flag != 0:
pass
return np.array(combinate[force_flag]).reshape(8)
def rbox2poly_single(rrect):
"""
rrect:[x_ctr,y_ctr,w,h,angle]
to
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
"""
x_ctr, y_ctr, width, height, angle = rrect[:5]
tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
# rect 2x4
rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
R = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])
# poly
poly = R.dot(rect)
x0, x1, x2, x3 = poly[0, :4] + x_ctr
y0, y1, y2, y3 = poly[1, :4] + y_ctr
poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32)
poly = get_best_begin_point_single(poly)
return poly
def rbox2poly(rrects):
"""
rrect:[x_ctr,y_ctr,w,h,angle]
to
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
"""
polys = []
for rrect in rrects:
x_ctr, y_ctr, width, height, angle = rrect[:5]
tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
R = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])
poly = R.dot(rect)
x0, x1, x2, x3 = poly[0, :4] + x_ctr
y0, y1, y2, y3 = poly[1, :4] + y_ctr
poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32)
poly = get_best_begin_point_single(poly)
polys.append(poly)
polys = np.array(polys)
return polys
...@@ -227,7 +227,7 @@ class S2ANetHead(nn.Layer): ...@@ -227,7 +227,7 @@ class S2ANetHead(nn.Layer):
align_conv_type (str): align_conv_type ['Conv', 'AlignConv'] align_conv_type (str): align_conv_type ['Conv', 'AlignConv']
align_conv_size (int): kernel size of align_conv align_conv_size (int): kernel size of align_conv
use_sigmoid_cls (bool): use sigmoid_cls or not use_sigmoid_cls (bool): use sigmoid_cls or not
reg_loss_weight (list): reg loss weight reg_loss_weight (list): loss weight for regression
""" """
__shared__ = ['num_classes'] __shared__ = ['num_classes']
__inject__ = ['anchor_assign'] __inject__ = ['anchor_assign']
...@@ -258,7 +258,7 @@ class S2ANetHead(nn.Layer): ...@@ -258,7 +258,7 @@ class S2ANetHead(nn.Layer):
self.anchor_base_sizes = list(anchor_strides) self.anchor_base_sizes = list(anchor_strides)
self.target_means = target_means self.target_means = target_means
self.target_stds = target_stds self.target_stds = target_stds
assert align_conv_type in ['AlignConv', 'Conv'] assert align_conv_type in ['AlignConv', 'Conv', 'DCN']
self.align_conv_type = align_conv_type self.align_conv_type = align_conv_type
self.align_conv_size = align_conv_size self.align_conv_size = align_conv_size
...@@ -277,12 +277,6 @@ class S2ANetHead(nn.Layer): ...@@ -277,12 +277,6 @@ class S2ANetHead(nn.Layer):
S2ANetAnchorGenerator(anchor_base, anchor_scales, S2ANetAnchorGenerator(anchor_base, anchor_scales,
anchor_ratios)) anchor_ratios))
# featmap_sizes
self.featmap_sizes = []
self.base_anchors = []
self.rbox_anchors = []
self.refine_anchor_list = []
self.fam_cls_convs = nn.Sequential() self.fam_cls_convs = nn.Sequential()
self.fam_reg_convs = nn.Sequential() self.fam_reg_convs = nn.Sequential()
...@@ -341,6 +335,22 @@ class S2ANetHead(nn.Layer): ...@@ -341,6 +335,22 @@ class S2ANetHead(nn.Layer):
padding=(self.align_conv_size - 1) // 2, padding=(self.align_conv_size - 1) // 2,
bias_attr=ParamAttr(initializer=Constant(0))) bias_attr=ParamAttr(initializer=Constant(0)))
elif self.align_conv_type == "DCN":
self.align_conv_offset = nn.Conv2D(
self.feat_out,
2 * self.align_conv_size**2,
1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0)))
self.align_conv = paddle.vision.ops.DeformConv2D(
self.feat_out,
self.feat_out,
self.align_conv_size,
padding=(self.align_conv_size - 1) // 2,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=False)
self.or_conv = nn.Conv2D( self.or_conv = nn.Conv2D(
self.feat_out, self.feat_out,
self.feat_out, self.feat_out,
...@@ -400,6 +410,11 @@ class S2ANetHead(nn.Layer): ...@@ -400,6 +410,11 @@ class S2ANetHead(nn.Layer):
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0))) bias_attr=ParamAttr(initializer=Constant(0)))
self.base_anchors = dict()
self.featmap_sizes = dict()
self.base_anchors = dict()
self.refine_anchor_list = []
def forward(self, feats): def forward(self, feats):
fam_reg_branch_list = [] fam_reg_branch_list = []
fam_cls_branch_list = [] fam_cls_branch_list = []
...@@ -453,9 +468,6 @@ class S2ANetHead(nn.Layer): ...@@ -453,9 +468,6 @@ class S2ANetHead(nn.Layer):
elif self.align_conv_type == 'DCN': elif self.align_conv_type == 'DCN':
align_offset = self.align_conv_offset(feat) align_offset = self.align_conv_offset(feat)
align_feat = self.align_conv(feat, align_offset) align_feat = self.align_conv(feat, align_offset)
elif self.align_conv_type == 'GA_DCN':
align_offset = self.align_conv_offset(feat)
align_feat = self.align_conv(feat, align_offset)
elif self.align_conv_type == 'Conv': elif self.align_conv_type == 'Conv':
align_feat = self.align_conv(feat) align_feat = self.align_conv(feat)
...@@ -582,6 +594,9 @@ class S2ANetHead(nn.Layer): ...@@ -582,6 +594,9 @@ class S2ANetHead(nn.Layer):
fam_bbox_pred = paddle.squeeze(fam_bbox_pred, axis=0) fam_bbox_pred = paddle.squeeze(fam_bbox_pred, axis=0)
fam_bbox_pred = paddle.reshape(fam_bbox_pred, [-1, 5]) fam_bbox_pred = paddle.reshape(fam_bbox_pred, [-1, 5])
fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets) fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets)
loss_weight = paddle.to_tensor(
self.reg_loss_weight, dtype='float32', stop_gradient=True)
fam_bbox = paddle.multiply(fam_bbox, loss_weight)
feat_bbox_weights = paddle.to_tensor( feat_bbox_weights = paddle.to_tensor(
feat_bbox_weights, stop_gradient=True) feat_bbox_weights, stop_gradient=True)
fam_bbox = fam_bbox * feat_bbox_weights fam_bbox = fam_bbox * feat_bbox_weights
...@@ -590,6 +605,7 @@ class S2ANetHead(nn.Layer): ...@@ -590,6 +605,7 @@ class S2ANetHead(nn.Layer):
fam_bbox_losses.append(fam_bbox_total) fam_bbox_losses.append(fam_bbox_total)
fam_cls_loss = paddle.add_n(fam_cls_losses) fam_cls_loss = paddle.add_n(fam_cls_losses)
fam_cls_loss = fam_cls_loss * 2.0
fam_reg_loss = paddle.add_n(fam_bbox_losses) fam_reg_loss = paddle.add_n(fam_bbox_losses)
return fam_cls_loss, fam_reg_loss return fam_cls_loss, fam_reg_loss
...@@ -660,6 +676,9 @@ class S2ANetHead(nn.Layer): ...@@ -660,6 +676,9 @@ class S2ANetHead(nn.Layer):
odm_bbox_pred = paddle.squeeze(odm_bbox_pred, axis=0) odm_bbox_pred = paddle.squeeze(odm_bbox_pred, axis=0)
odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5]) odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5])
odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets) odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)
loss_weight = paddle.to_tensor(
self.reg_loss_weight, dtype='float32', stop_gradient=True)
odm_bbox = paddle.multiply(odm_bbox, loss_weight)
feat_bbox_weights = paddle.to_tensor( feat_bbox_weights = paddle.to_tensor(
feat_bbox_weights, stop_gradient=True) feat_bbox_weights, stop_gradient=True)
odm_bbox = odm_bbox * feat_bbox_weights odm_bbox = odm_bbox * feat_bbox_weights
...@@ -667,6 +686,7 @@ class S2ANetHead(nn.Layer): ...@@ -667,6 +686,7 @@ class S2ANetHead(nn.Layer):
odm_bbox_losses.append(odm_bbox_total) odm_bbox_losses.append(odm_bbox_total)
odm_cls_loss = paddle.add_n(odm_cls_losses) odm_cls_loss = paddle.add_n(odm_cls_losses)
odm_cls_loss = odm_cls_loss * 2.0
odm_reg_loss = paddle.add_n(odm_bbox_losses) odm_reg_loss = paddle.add_n(odm_bbox_losses)
return odm_cls_loss, odm_reg_loss return odm_cls_loss, odm_reg_loss
...@@ -799,25 +819,6 @@ class S2ANetHead(nn.Layer): ...@@ -799,25 +819,6 @@ class S2ANetHead(nn.Layer):
return refine_anchors_list, valid_flag_list return refine_anchors_list, valid_flag_list
def rbox2poly_single(self, rrect, get_best_begin_point=False):
"""
rrect:[x_ctr,y_ctr,w,h,angle]
to
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
"""
x_ctr, y_ctr, width, height, angle = rrect[:5]
tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
# rect 2x4
rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
R = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])
# poly
poly = R.dot(rect)
x0, x1, x2, x3 = poly[0, :4] + x_ctr
y0, y1, y2, y3 = poly[1, :4] + y_ctr
poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32)
return poly
def get_bboxes(self, cls_score_list, bbox_pred_list, mlvl_anchors, nms_pre, def get_bboxes(self, cls_score_list, bbox_pred_list, mlvl_anchors, nms_pre,
cls_out_channels, use_sigmoid_cls): cls_out_channels, use_sigmoid_cls):
assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors) assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors)
...@@ -855,7 +856,6 @@ class S2ANetHead(nn.Layer): ...@@ -855,7 +856,6 @@ class S2ANetHead(nn.Layer):
target_stds = (1.0, 1.0, 1.0, 1.0, 1.0) target_stds = (1.0, 1.0, 1.0, 1.0, 1.0)
bboxes = bbox_utils.delta2rbox(anchors, bbox_pred, target_means, bboxes = bbox_utils.delta2rbox(anchors, bbox_pred, target_means,
target_stds) target_stds)
mlvl_bboxes.append(bboxes) mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores) mlvl_scores.append(scores)
......
...@@ -17,7 +17,7 @@ import paddle ...@@ -17,7 +17,7 @@ import paddle
import paddle.nn as nn import paddle.nn as nn
import paddle.nn.functional as F import paddle.nn.functional as F
from ppdet.core.workspace import register from ppdet.core.workspace import register
from ppdet.modeling.bbox_utils import nonempty_bbox from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly
from . import ops from . import ops
try: try:
from collections.abc import Sequence from collections.abc import Sequence
...@@ -231,45 +231,6 @@ class S2ANetBBoxPostProcess(object): ...@@ -231,45 +231,6 @@ class S2ANetBBoxPostProcess(object):
self.nms = nms self.nms = nms
self.origin_shape_list = [] self.origin_shape_list = []
def rbox2poly(self, rrect, get_best_begin_point=True):
"""
rrect: [N, 5] [x_ctr,y_ctr,w,h,angle]
to
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
"""
bbox_num = rrect.shape[0]
x_ctr = rrect[:, 0]
y_ctr = rrect[:, 1]
width = rrect[:, 2]
height = rrect[:, 3]
angle = rrect[:, 4]
tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
# rect 2x4
rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
R = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])
# R:[2,2,M] rect:[2,4,M]
#poly = R.dot(rect)
poly = []
for i in range(R.shape[2]):
poly.append(R[:, :, i].dot(rect[:, :, i]))
# poly:[M, 2, 4]
poly = np.array(poly)
coor_x = poly[:, 0, :4] + x_ctr.reshape(bbox_num, 1)
coor_y = poly[:, 1, :4] + y_ctr.reshape(bbox_num, 1)
poly = np.stack(
[
coor_x[:, 0], coor_y[:, 0], coor_x[:, 1], coor_y[:, 1],
coor_x[:, 2], coor_y[:, 2], coor_x[:, 3], coor_y[:, 3]
],
axis=1)
if get_best_begin_point:
poly_lst = [get_best_begin_point_single(e) for e in poly]
poly = np.array(poly_lst)
return poly
def get_prediction(self, pred_scores, pred_bboxes, im_shape, scale_factor): def get_prediction(self, pred_scores, pred_bboxes, im_shape, scale_factor):
""" """
pred_scores : [N, M] score pred_scores : [N, M] score
...@@ -278,7 +239,7 @@ class S2ANetBBoxPostProcess(object): ...@@ -278,7 +239,7 @@ class S2ANetBBoxPostProcess(object):
scale_factor : [N, 2] scale_factor scale_factor : [N, 2] scale_factor
""" """
# TODO: support bs>1 # TODO: support bs>1
pred_ploys = self.rbox2poly(pred_bboxes.numpy(), False) pred_ploys = rbox2poly(pred_bboxes.numpy())
pred_ploys = paddle.to_tensor(pred_ploys) pred_ploys = paddle.to_tensor(pred_ploys)
pred_ploys = paddle.reshape( pred_ploys = paddle.reshape(
pred_ploys, [1, pred_ploys.shape[0], pred_ploys.shape[1]]) pred_ploys, [1, pred_ploys.shape[0], pred_ploys.shape[1]])
...@@ -332,14 +293,14 @@ class S2ANetBBoxPostProcess(object): ...@@ -332,14 +293,14 @@ class S2ANetBBoxPostProcess(object):
bboxes[:, 1::2] = bboxes[:, 1::2] / scale_factor[1] bboxes[:, 1::2] = bboxes[:, 1::2] / scale_factor[1]
zeros = paddle.zeros_like(origin_h) zeros = paddle.zeros_like(origin_h)
x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w), zeros) x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros)
y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h), zeros) y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros)
x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w), zeros) x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros)
y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h), zeros) y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros)
x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w), zeros) x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros)
y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h), zeros) y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros)
x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w), zeros) x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros)
y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h), zeros) y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros)
bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1) bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1)
bboxes = (bbox, bbox_num) bboxes = (bbox, bbox_num)
return bboxes return bboxes
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册