Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
29b68392
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
29b68392
编写于
1月 29, 2018
作者:
C
Cao Ying
提交者:
GitHub
1月 29, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7928 from guoshengCS/add-weight-normalization
Add weight normalization wrapper.
上级
9bf1a8da
52e17bf5
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
330 addition
and
8 deletion
+330
-8
paddle/operators/reduce_op.cc
paddle/operators/reduce_op.cc
+6
-3
python/paddle/v2/fluid/layer_helper.py
python/paddle/v2/fluid/layer_helper.py
+182
-4
python/paddle/v2/fluid/param_attr.py
python/paddle/v2/fluid/param_attr.py
+21
-1
python/paddle/v2/fluid/tests/test_weight_normalization.py
python/paddle/v2/fluid/tests/test_weight_normalization.py
+121
-0
未找到文件。
paddle/operators/reduce_op.cc
浏览文件 @
29b68392
...
...
@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/reduce_op.h"
#include "paddle/operators/net_op.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -38,10 +37,14 @@ class ReduceOp : public framework::OperatorWithKernel {
dim
,
x_rank
,
"The dim should be in the range [-rank(input), rank(input))."
);
bool
reduce_all
=
ctx
->
Attrs
().
Get
<
bool
>
(
"reduce_all"
);
bool
keep_dim
=
ctx
->
Attrs
().
Get
<
bool
>
(
"keep_dim"
);
if
(
reduce_all
)
{
ctx
->
SetOutputDim
(
"Out"
,
{
1
});
if
(
keep_dim
)
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
std
::
vector
<
int64_t
>
(
x_rank
,
1
)));
else
ctx
->
SetOutputDim
(
"Out"
,
{
1
});
}
else
{
bool
keep_dim
=
ctx
->
Attrs
().
Get
<
bool
>
(
"keep_dim"
);
auto
dims_vector
=
vectorize
(
x_dims
);
if
(
keep_dim
||
x_rank
==
1
)
{
dims_vector
[
dim
]
=
1
;
...
...
python/paddle/v2/fluid/layer_helper.py
浏览文件 @
29b68392
...
...
@@ -18,7 +18,7 @@ import itertools
from
framework
import
Variable
,
Parameter
,
default_main_program
,
default_startup_program
,
\
unique_name
,
dtype_is_floating
from
paddle.v2.fluid.initializer
import
Constant
,
Xavier
from
param_attr
import
ParamAttr
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
class
LayerHelper
(
object
):
...
...
@@ -104,6 +104,177 @@ class LayerHelper(object):
(
dtype
,
each
.
dtype
))
return
dtype
def
_create_weight_normalize
(
self
,
attr
,
shape
,
dtype
):
from
.layers
import
elementwise_mul
,
elementwise_div
,
reshape
# Remove these ops when LayerHelper and layers support indicating
# program and block.
def
__norm_op
(
x
,
out
=
None
,
p
=
2
,
dim
=
None
,
keep_dim
=
False
,
block
=
self
.
startup_program
.
global_block
()):
if
out
is
None
:
out
=
block
.
create_var
(
name
=
unique_name
(
"."
.
join
([
self
.
name
,
'weight_norm_norm'
])),
dtype
=
dtype
,
persistable
=
False
)
abs_out
=
block
.
create_var
(
name
=
unique_name
(
"."
.
join
([
self
.
name
,
'weight_norm_abs'
])),
dtype
=
dtype
,
persistable
=
False
)
block
.
append_op
(
type
=
'abs'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
abs_out
})
pow_out
=
block
.
create_var
(
name
=
unique_name
(
"."
.
join
([
self
.
name
,
'weight_norm_pow'
])),
dtype
=
dtype
,
persistable
=
False
)
block
.
append_op
(
type
=
'pow'
,
inputs
=
{
'X'
:
abs_out
},
outputs
=
{
'Out'
:
pow_out
},
attrs
=
{
'factor'
:
float
(
p
)})
sum_out
=
block
.
create_var
(
name
=
unique_name
(
"."
.
join
([
self
.
name
,
'weight_norm_sum'
])),
dtype
=
dtype
,
persistable
=
False
)
block
.
append_op
(
type
=
'reduce_sum'
,
inputs
=
{
'X'
:
pow_out
},
outputs
=
{
'Out'
:
sum_out
},
attrs
=
{
'dim'
:
dim
,
'keep_dim'
:
keep_dim
,
'reduce_all'
:
True
if
dim
is
None
else
False
})
block
.
append_op
(
type
=
'pow'
,
inputs
=
{
'X'
:
sum_out
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'factor'
:
1.
/
p
})
return
out
def
__reshape_op
(
x
,
shape
,
out
=
None
,
block
=
self
.
startup_program
.
global_block
()):
if
out
is
None
:
out
=
block
.
create_var
(
name
=
unique_name
(
"."
.
join
(
[
self
.
name
,
'weight_norm_reshape'
])),
dtype
=
dtype
,
persistable
=
False
)
block
.
append_op
(
type
=
'reshape'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'shape'
:
shape
})
return
out
def
__transpose_op
(
x
,
axis
,
out
=
None
,
block
=
self
.
startup_program
.
global_block
()):
if
out
is
None
:
out
=
block
.
create_var
(
name
=
unique_name
(
"."
.
join
(
[
self
.
name
,
'weight_norm_transpose'
])),
dtype
=
dtype
,
persistable
=
False
)
block
.
append_op
(
type
=
'transpose'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'axis'
:
axis
})
return
out
def
__norm_except_dim
(
x
,
out
=
None
,
dim
=
None
,
block
=
self
.
startup_program
.
global_block
()):
"""Computes the norm over all dimensions except dim"""
if
out
is
None
:
out
=
block
.
create_var
(
name
=
unique_name
(
"."
.
join
([
self
.
name
,
'weight_norm_norm'
])),
dtype
=
dtype
,
persistable
=
False
)
if
dim
is
None
:
__norm_op
(
x
,
out
,
dim
=
dim
,
block
=
block
)
elif
dim
==
0
:
out_shape
=
[
x
.
shape
[
0
]]
+
[
1
]
*
(
len
(
x
.
shape
)
-
1
)
reshape
=
__reshape_op
(
x
,
shape
=
[
x
.
shape
[
0
],
-
1
],
block
=
block
)
norm
=
__norm_op
(
reshape
,
dim
=
1
,
block
=
block
)
__reshape_op
(
norm
,
out
=
out
,
shape
=
out_shape
,
block
=
block
)
elif
dim
==
len
(
x
.
shape
)
-
1
:
out_shape
=
[
1
]
*
(
len
(
x
.
shape
)
-
1
)
+
[
x
.
shape
[
-
1
]]
reshape
=
__reshape_op
(
x
,
shape
=
[
-
1
,
x
.
shape
[
-
1
]],
block
=
block
)
norm
=
__norm_op
(
reshape
,
dim
=
0
,
block
=
block
)
__reshape_op
(
norm
,
out
=
out
,
shape
=
out_shape
,
block
=
block
)
else
:
perm
=
range
(
len
(
x
.
shape
))
perm
[
0
],
perm
[
dim
]
=
dim
,
0
transpose
=
__transpose_op
(
x
,
perm
,
block
=
block
)
norm
=
__norm_op
(
transpose
,
dim
=
0
,
block
=
block
)
__transpose_op
(
norm
,
perm
,
out
=
out
,
block
=
block
)
return
out
def
__weight_normalize
(
g
,
v
,
dim
):
"""Calculations for weight normalization"""
norm
=
__norm_except_dim
(
v
,
dim
=
dim
,
block
=
self
.
main_program
.
current_block
())
scale
=
elementwise_div
(
x
=
g
,
y
=
norm
)
# The shapes of g and norm are the same.
# Currently, elementwise_mul only support broadcast when the shape
# of y is a subset of the shape of x. Thus, we reshape y to squeeze
# to achive the subset.
w
=
elementwise_mul
(
x
=
v
,
y
=
scale
if
dim
is
None
else
reshape
(
x
=
scale
,
shape
=
[
v
.
shape
[
dim
]]),
axis
=-
1
if
dim
is
None
else
dim
)
# To serialize the original parameter for inference, maybe a
# parameter rather than a variable should be returned.
return
w
g_param_attr
=
copy
.
deepcopy
(
attr
)
g_param_attr
.
name
=
attr
.
name
+
'_g'
g_param_shape
=
[
1
]
*
len
(
shape
)
if
attr
.
dim
is
not
None
:
g_param_shape
[
attr
.
dim
]
=
shape
[
attr
.
dim
]
v_param_attr
=
copy
.
deepcopy
(
attr
)
v_param_attr
.
name
=
attr
.
name
+
'_v'
v_param_shape
=
shape
# Add to startup_program to initialize g and v.
# Try to reconstruct the initializer of w by initializing g and v.
# Set the initializers of g and v as below, then the distribution
# of w is the same as initializing w with the given initializer.
# For Data-Dependent Initialization, please compute the init-values
# of g and v in external and then feed the values to g and v by
# executing an extra program.
g_param
=
self
.
startup_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
g_param_shape
,
**
g_param_attr
.
to_kwargs
(
with_initializer
=
False
))
v_param
=
self
.
startup_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
v_param_shape
,
**
v_param_attr
.
to_kwargs
(
with_initializer
=
True
))
__norm_except_dim
(
x
=
v_param
,
out
=
g_param
,
dim
=
attr
.
dim
,
block
=
self
.
startup_program
.
global_block
())
# Add weight normalization to main_program
g_param
=
self
.
main_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
g_param_shape
,
**
g_param_attr
.
to_kwargs
())
v_param
=
self
.
main_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
v_param_shape
,
**
v_param_attr
.
to_kwargs
())
w_param
=
__weight_normalize
(
g_param
,
v_param
,
dim
=
attr
.
dim
)
return
w_param
def
create_parameter
(
self
,
attr
,
shape
,
...
...
@@ -114,16 +285,23 @@ class LayerHelper(object):
attr
=
copy
.
deepcopy
(
attr
)
assert
isinstance
(
attr
,
ParamAttr
)
suffix
=
'b'
if
is_bias
else
'w'
if
attr
.
name
is
None
:
attr
.
name
=
unique_name
(
"."
.
join
([
self
.
name
,
suffix
]))
if
default_initializer
is
None
:
if
default_initializer
is
None
and
attr
.
initializer
is
None
:
if
is_bias
:
attr
.
set_default_bias_initializer
()
else
:
attr
.
set_default_param_initializer
()
else
:
attr
.
set_default_initializer
(
default_initializer
)
if
attr
.
name
is
None
:
attr
.
name
=
unique_name
(
"."
.
join
([
self
.
name
,
suffix
]))
# If weight normalization is set, insert extra parameters and ops.
# Refer to https://arxiv.org/pdf/1602.07868.pdf
if
isinstance
(
attr
,
WeightNormParamAttr
):
param
=
self
.
_create_weight_normalize
(
attr
,
shape
,
dtype
)
WeightNormParamAttr
.
params_with_weight_norm
.
append
(
param
)
return
param
self
.
startup_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
to_kwargs
(
with_initializer
=
True
))
...
...
python/paddle/v2/fluid/param_attr.py
浏览文件 @
29b68392
...
...
@@ -15,7 +15,10 @@
from
initializer
import
Initializer
,
Xavier
,
Constant
from
regularizer
import
WeightDecayRegularizer
__all__
=
[
'ParamAttr'
]
__all__
=
[
'ParamAttr'
,
'WeightNormParamAttr'
,
]
class
ParamAttr
(
object
):
...
...
@@ -82,3 +85,20 @@ class ParamAttr(object):
if
with_initializer
:
kwargs
[
'initializer'
]
=
self
.
initializer
return
kwargs
class
WeightNormParamAttr
(
ParamAttr
):
"""
Used for weight normalization. Any field in ParamAttr can also be set here.
Besides, an extra field dim can be set to indicate the dimension except
which to normalize.
"""
# List to record the parameters reparameterized by weight normalization.
# If these parameters are treated as Variable rather than Parameter,
# it can be used to discriminate these parameters and help to serialize
# these paramters for inference.
params_with_weight_norm
=
[]
def
__init__
(
self
,
dim
=
None
,
**
kwargs
):
super
(
WeightNormParamAttr
,
self
).
__init__
(
**
kwargs
)
self
.
dim
=
dim
python/paddle/v2/fluid/tests/test_weight_normalization.py
0 → 100644
浏览文件 @
29b68392
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
import
collections
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.core
as
core
from
paddle.v2.fluid.initializer
import
ConstantInitializer
from
paddle.v2.fluid.param_attr
import
WeightNormParamAttr
class
TestWeightNormalization
(
unittest
.
TestCase
):
batch_size
=
3
hidden_size
=
5
data_desc
=
([
'x'
,
[
10
],
0
],
)
@
classmethod
def
setUpClass
(
cls
):
cls
.
set_program
()
@
classmethod
def
set_program
(
cls
):
data
=
fluid
.
layers
.
data
(
name
=
cls
.
data_desc
[
0
][
0
],
shape
=
cls
.
data_desc
[
0
][
1
])
out
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
cls
.
hidden_size
,
param_attr
=
WeightNormParamAttr
(
dim
=
None
,
name
=
'weight_norm_param'
,
initializer
=
ConstantInitializer
(
1.0
)),
bias_attr
=
False
,
act
=
None
)
loss
=
fluid
.
layers
.
reduce_sum
(
out
)
fluid
.
backward
.
append_backward
(
loss
=
loss
)
cls
.
fetch_list
=
[
'weight_norm_param_g'
,
'weight_norm_param_v'
,
'weight_norm_param_g@GRAD'
]
def
run_program
(
self
):
outputs
=
[]
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
set_inputs
(
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
output
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
self
.
inputs
,
fetch_list
=
self
.
fetch_list
,
return_numpy
=
False
)
outputs
.
append
(
output
)
self
.
actual_outputs
=
outputs
def
set_data
(
self
):
self
.
data
=
collections
.
OrderedDict
()
for
desc
in
self
.
data_desc
:
data_name
=
desc
[
0
]
data_shape
=
desc
[
1
]
data_lod_level
=
desc
[
2
]
data_lod
=
[]
for
i
in
range
(
data_lod_level
):
lod_level_i
=
numpy
.
random
.
randint
(
low
=
1
,
high
=
5
,
size
=
self
.
batch_size
if
i
==
0
else
lod_level_i
[
-
1
])
lod_level_i
=
[
0
]
+
numpy
.
cumsum
(
lod_level_i
).
tolist
()
data_lod
.
append
(
lod_level_i
)
data_value
=
numpy
.
random
.
random
(
size
=
[
data_lod
[
-
1
][
-
1
]
if
data_lod
else
self
.
batch_size
]
+
data_shape
).
astype
(
'float32'
)
self
.
data
[
data_name
]
=
(
data_value
,
data_lod
)
def
set_inputs
(
self
,
place
):
self
.
inputs
=
{}
for
desc
in
self
.
data_desc
:
tensor
=
fluid
.
Tensor
()
tensor
.
set
(
self
.
data
[
desc
[
0
]][
0
],
place
)
if
self
.
data
[
desc
[
0
]][
1
]:
tensor
.
set_lod
(
self
.
data
[
desc
[
0
]][
1
])
self
.
inputs
[
desc
[
0
]]
=
tensor
def
weight_normalize
(
self
):
v
=
numpy
.
ones
((
self
.
data
[
self
.
data_desc
[
0
][
0
]][
0
].
shape
[
-
1
],
self
.
hidden_size
))
g
=
numpy
.
linalg
.
norm
(
v
,
axis
=
None
,
keepdims
=
True
)
w
=
g
*
v
/
numpy
.
linalg
.
norm
(
v
,
axis
=
None
,
keepdims
=
True
)
x
=
self
.
data
[
self
.
data_desc
[
0
][
0
]][
0
]
out
=
numpy
.
dot
(
x
,
w
)
g_grad
=
(
numpy
.
dot
(
x
.
T
,
numpy
.
ones_like
(
out
))
*
(
v
/
numpy
.
linalg
.
norm
(
v
,
axis
=
None
,
keepdims
=
True
))).
sum
(
axis
=
None
,
keepdims
=
True
)
return
g
,
v
,
g_grad
def
test_weight_normalization
(
self
):
self
.
set_data
()
self
.
run_program
()
expect_output
=
self
.
weight_normalize
()
for
actual_output
in
self
.
actual_outputs
:
[
self
.
assertTrue
(
numpy
.
allclose
(
numpy
.
array
(
actual
),
expect
,
atol
=
0.001
))
for
expect
,
actual
in
zip
(
expect_output
,
actual_output
)
]
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录