Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
29697c2e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
29697c2e
编写于
12月 20, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add stop_gradient to VarBase to support loss function
test=develop
上级
fba3712a
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
99 addition
and
29 deletion
+99
-29
paddle/fluid/framework/framework.proto
paddle/fluid/framework/framework.proto
+1
-1
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+33
-6
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+5
-2
paddle/fluid/operators/cross_entropy_op.h
paddle/fluid/operators/cross_entropy_op.h
+2
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+9
-2
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+10
-2
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+10
-0
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
+29
-16
未找到文件。
paddle/fluid/framework/framework.proto
浏览文件 @
29697c2e
...
...
@@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
syntax
=
"proto2"
;
option
optimize_for
=
LITE_RUNTIME
;
/* option optimize_for = LITE_RUNTIME; */
package
paddle
.
framework.proto
;
// Any incompatible changes to ProgramDesc and its dependencies should
...
...
paddle/fluid/imperative/layer.cc
浏览文件 @
29697c2e
...
...
@@ -115,6 +115,7 @@ framework::Variable* CreateVariable(const std::string& name,
varname
=
string
::
Sprintf
(
"%s@%d"
,
varname
,
id
);
}
LOG
(
ERROR
)
<<
"creating var "
<<
varname
;
VLOG
(
3
)
<<
"creating var "
<<
varname
;
framework
::
Variable
*
var
=
scope
->
Var
(
varname
);
framework
::
LoDTensor
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
...
...
@@ -130,13 +131,22 @@ framework::LoDTensor& VarBase::Grad() {
}
void
VarBase
::
ApplyGrad
(
framework
::
Scope
*
scope
,
Variable
*
grad
)
{
PADDLE_ENFORCE
(
grad
->
IsInitialized
(),
"grad %s must be initialized"
,
var_desc_
->
Name
());
PADDLE_ENFORCE
(
grad
->
Get
<
framework
::
LoDTensor
>
().
IsInitialized
(),
"variable %s has NO gradient, please set stop_gradient to it"
,
var_desc_
->
Name
());
VLOG
(
3
)
<<
"apply var grad "
<<
var_desc_
->
Name
()
<<
" "
<<
grad
->
Get
<
framework
::
LoDTensor
>
().
data
<
float
>
()[
0
];
if
(
!
grads_
)
{
grads_
=
CreateVariable
(
string
::
Sprintf
(
"%s@IGrad"
,
var_desc_
->
Name
()),
var_
->
Get
<
framework
::
LoDTensor
>
().
dims
(),
0.0
,
scope
);
}
AddTo
(
grad
,
grads_
);
VLOG
(
3
)
<<
"grad_ after apply var grad "
<<
var_desc_
->
Name
()
<<
" "
<<
grads_
->
Get
<
framework
::
LoDTensor
>
().
data
<
float
>
()[
0
];
...
...
@@ -153,8 +163,9 @@ std::vector<Variable*> OpBase::ApplyGrad(framework::Scope* scope) {
// grad op inputs can be forward inputs, so not in grad_to_var.
continue
;
}
VLOG
(
3
)
<<
"op grad in var "
<<
grad_invar
;
block_
->
FindRecursiveOrCreateVar
(
grad_invar
);
VLOG
(
3
)
<<
"op grad input var "
<<
grad_invar
;
framework
::
VarDesc
&
grad_invar_desc
=
block_
->
FindRecursiveOrCreateVar
(
grad_invar
);
framework
::
Variable
*
var
=
scope
->
Var
(
grad_invar
);
const
std
::
string
&
invar
=
grad_to_var_
->
at
(
grad_invar
);
for
(
VarBase
*
varbase
:
*
output_vars_
)
{
...
...
@@ -165,21 +176,33 @@ std::vector<Variable*> OpBase::ApplyGrad(framework::Scope* scope) {
break
;
}
}
grad_invar_desc
.
SetShape
(
framework
::
vectorize
(
var
->
Get
<
framework
::
LoDTensor
>
().
dims
()));
VLOG
(
3
)
<<
"set op grad var desc's shape size "
<<
framework
::
vectorize
(
var
->
Get
<
framework
::
LoDTensor
>
().
dims
()).
size
();
}
LOG
(
ERROR
)
<<
"grad_op_desc_"
<<
grad_op_desc_
->
Proto
()
->
DebugString
();
for
(
const
std
::
string
&
outvar
:
grad_op_desc_
->
OutputArgumentNames
())
{
VLOG
(
3
)
<<
"
grad out
var "
<<
outvar
;
VLOG
(
3
)
<<
"
op grad output
var "
<<
outvar
;
block_
->
FindRecursiveOrCreateVar
(
outvar
);
framework
::
Variable
*
var
=
scope
->
Var
(
outvar
);
if
(
!
var
->
IsInitialized
())
{
VLOG
(
3
)
<<
"init op grad output var "
<<
outvar
;
framework
::
VarDesc
*
var_desc
=
block_
->
FindVar
(
outvar
);
if
(
var_desc
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
framework
::
LoDTensor
>
();
// framework::Tensor* tensor = var->GetMutable<framework::LoDTensor>();
// tensor->mutable_data(platform::CPUPlace());
}
else
{
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
}
}
VLOG
(
3
)
<<
"op grad output var "
<<
outvar
<<
" is inited"
;
}
grad_op_desc_
->
InferShape
(
*
block_
);
grad_op_desc_
->
InferVarType
(
block_
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
...
...
@@ -194,11 +217,15 @@ std::vector<Variable*> OpBase::ApplyGrad(framework::Scope* scope) {
VarBase
*
origin_var
=
(
*
input_vars_
)[
i
];
for
(
const
std
::
string
&
outvar
:
grad_op_desc_
->
OutputArgumentNames
())
{
Variable
*
var
=
scope
->
FindVar
(
outvar
);
std
::
string
orig_var
=
grad_to_var_
->
at
(
outvar
);
if
(
origin_var
->
var_desc_
->
Name
()
!=
orig_var
)
{
if
(
var
->
IsInitialized
())
{
VLOG
(
3
)
<<
"get grad op output var "
<<
outvar
;
}
std
::
string
orig_var_name
=
grad_to_var_
->
at
(
outvar
);
if
(
origin_var
->
var_desc_
->
Name
()
!=
orig_var_name
||
origin_var
->
stop_gradient_
)
{
continue
;
}
VLOG
(
3
)
<<
"apply grad "
<<
outvar
<<
" with origin "
<<
orig_var
;
VLOG
(
3
)
<<
"apply grad "
<<
outvar
<<
" with origin "
<<
orig_var
_name
;
origin_var
->
ApplyGrad
(
scope
,
var
);
found
=
true
;
ret
.
push_back
(
var
);
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
29697c2e
...
...
@@ -29,12 +29,13 @@ class OpBase;
class
VarBase
{
public:
VarBase
(
)
explicit
VarBase
(
bool
stop_gradient
=
false
)
:
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
),
var_desc_
(
nullptr
),
var_
(
nullptr
),
grads_
(
nullptr
)
{}
grads_
(
nullptr
),
stop_gradient_
(
stop_gradient
)
{}
virtual
~
VarBase
()
{}
...
...
@@ -50,6 +51,8 @@ class VarBase {
framework
::
VarDesc
*
var_desc_
;
framework
::
Variable
*
var_
;
framework
::
Variable
*
grads_
;
bool
stop_gradient_
;
};
class
OpBase
{
...
...
paddle/fluid/operators/cross_entropy_op.h
浏览文件 @
29697c2e
...
...
@@ -110,6 +110,8 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
LOG
(
ERROR
)
<<
"CROSS ENTROPY GRAD DX: "
<<
ctx
.
op
().
Output
(
framework
::
GradVarName
(
"X"
));
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Following computation only depends on the last dimension size. So it's
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
29697c2e
...
...
@@ -111,7 +111,8 @@ PYBIND11_MODULE(core, m) {
BindException
(
&
m
);
py
::
class_
<
imperative
::
VarBase
,
PyVarBase
>
(
m
,
"VarBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<>
())
// .def(py::init<>())
.
def
(
py
::
init
<
bool
>
(),
py
::
arg
(
"stop_gradient"
)
=
false
)
.
def
(
"_run_backward"
,
[](
imperative
::
VarBase
&
self
,
framework
::
Scope
*
scope
)
{
self
.
RunBackward
(
scope
);
...
...
@@ -129,7 +130,13 @@ PYBIND11_MODULE(core, m) {
[](
imperative
::
VarBase
&
self
,
framework
::
VarDesc
*
var_desc
)
{
self
.
var_desc_
=
var_desc
;
},
py
::
return_value_policy
::
reference
);
py
::
return_value_policy
::
reference
)
.
def_property
(
"stop_gradient"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
stop_gradient_
;
},
[](
imperative
::
VarBase
&
self
,
bool
stop_gradient
)
{
self
.
stop_gradient_
=
stop_gradient
;
});
py
::
class_
<
imperative
::
OpBase
,
PyOpBase
>
(
m
,
"OpBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<>
())
...
...
python/paddle/fluid/framework.py
浏览文件 @
29697c2e
...
...
@@ -354,11 +354,11 @@ class Variable(object):
self
.
block
.
vars
[
name
]
=
self
self
.
op
=
None
self
.
stop_gradient
=
stop_gradient
self
.
is_data
=
is_data
if
_in_imperative_mode
():
self
.
_ivar
=
core
.
VarBase
()
self
.
_ivar
.
desc
=
self
.
desc
self
.
_ivar
.
stop_gradient
=
stop_gradient
def
_numpy
(
self
):
scope
=
_imperative_tracer
().
get_scope
()
...
...
@@ -366,7 +366,7 @@ class Variable(object):
return
np
.
array
(
tensor
)
def
_backward
(
self
):
scope
=
_imperative_tracer
().
get_scope
(
self
.
block
.
desc
)
scope
=
_imperative_tracer
().
get_scope
()
self
.
_ivar
.
_run_backward
(
scope
)
def
_gradient
(
self
):
...
...
@@ -415,6 +415,14 @@ class Variable(object):
"""
self
.
desc
=
input
@
property
def
_stop_gradient
(
self
):
return
self
.
_ivar
.
stop_gradient
@
_stop_gradient
.
setter
def
_stop_gradient
(
self
,
s
):
self
.
_ivar
.
stop_gradient
=
s
@
property
def
persistable
(
self
):
return
self
.
desc
.
persistable
()
...
...
python/paddle/fluid/imperative/layers.py
浏览文件 @
29697c2e
...
...
@@ -25,12 +25,22 @@ __all__ = ['PyLayer']
class
PyLayer
(
core
.
Layer
):
def
__init__
(
self
,
*
args
,
**
kwargs
):
self
.
_once_built
=
True
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
**
kwargs
)
self
.
_dtype
=
kwargs
.
get
(
"dtype"
,
core
.
VarDesc
.
VarType
.
FP32
)
def
_build_once
(
self
,
inputs
):
pass
def
__call__
(
self
,
*
inputs
):
if
self
.
_once_built
:
self
.
_build_once
(
*
inputs
)
self
.
_once_built
=
False
outputs
=
self
.
forward
(
*
inputs
)
return
outputs
def
forward
(
self
,
*
inputs
):
...
...
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
浏览文件 @
29697c2e
...
...
@@ -18,14 +18,15 @@ import numpy as np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.imperative.base
import
to_variable
class
SimpleImgConvPool
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
num_filters
,
pool_size
,
pool_stride
,
pool_padding
=
0
,
...
...
@@ -81,24 +82,24 @@ class MNIST(fluid.imperative.PyLayer):
super
(
MNIST
,
self
).
__init__
(
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
num_channels
=
3
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
1
,
5
,
20
,
2
,
2
,
act
=
"relu"
)
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
num_channels
=
3
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
20
,
5
,
50
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
8
*
8
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
FC
(
-
1
,
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)))
def
forward
(
self
,
inputs
):
x
=
self
.
_simple_img_conv_pool_1
(
inputs
)
x
=
self
.
_simple_img_conv_pool_2
(
x
)
x
=
self
.
_fc
(
x
)
return
x
...
...
@@ -107,8 +108,20 @@ class TestImperativeMnist(unittest.TestCase):
with
fluid
.
imperative
.
guard
():
mnist
=
MNIST
()
data
=
np
.
random
.
rand
(
2
,
3
,
5
,
5
).
astype
(
'float32'
)
mnist
(
data
)
x_data
=
np
.
random
.
rand
(
128
,
1
,
28
,
28
).
astype
(
'float32'
)
img
=
to_variable
(
x_data
)
y_data
=
np
.
random
.
rand
(
128
,
1
).
astype
(
'int64'
)
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
predict
=
mnist
(
img
)
print
(
predict
.
shape
,
predict
.
dtype
,
label
.
shape
,
label
.
dtype
)
out
=
fluid
.
layers
.
cross_entropy
(
predict
,
label
)
print
(
out
.
shape
,
out
.
dtype
)
out
.
_backward
()
filter_grad
=
mnist
.
_simple_img_conv_pool_1
.
_conv2d
.
_filter_param
.
_gradient
(
)
print
(
filter_grad
)
# np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
# with fluid.imperative.guard():
# mlp = MLP()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录