Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
29616744
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
29616744
编写于
10月 24, 2017
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Rewrite sequence expand op
上级
4e8fccff
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
97 addition
and
264 deletion
+97
-264
paddle/framework/lod_tensor.cc
paddle/framework/lod_tensor.cc
+0
-23
paddle/framework/lod_tensor.h
paddle/framework/lod_tensor.h
+0
-3
paddle/operators/seq_expand_op.cc
paddle/operators/seq_expand_op.cc
+49
-60
paddle/operators/seq_expand_op.h
paddle/operators/seq_expand_op.h
+31
-97
python/paddle/v2/framework/tests/op_test.py
python/paddle/v2/framework/tests/op_test.py
+0
-2
python/paddle/v2/framework/tests/test_seq_expand.py
python/paddle/v2/framework/tests/test_seq_expand.py
+17
-79
未找到文件。
paddle/framework/lod_tensor.cc
浏览文件 @
29616744
...
@@ -112,28 +112,5 @@ void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
...
@@ -112,28 +112,5 @@ void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
lod_
=
new_lod
;
lod_
=
new_lod
;
}
}
Vector
<
size_t
>
expand_lod
(
Vector
<
size_t
>
level
,
Vector
<
size_t
>
indexes
,
Vector
<
size_t
>
scales
,
bool
repeat
)
{
Vector
<
size_t
>
result
;
result
.
push_back
(
level
[
0
]);
size_t
start
=
0
,
end
=
0
;
if
(
!
repeat
)
{
for
(
size_t
i
=
0
;
i
<
scales
.
size
();
++
i
)
{
result
.
push_back
(
result
.
back
()
+
scales
[
i
]
*
(
level
[
i
+
1
]
-
level
[
i
]));
}
}
else
{
for
(
size_t
i
=
0
;
i
<
scales
.
size
();
++
i
)
{
start
=
indexes
[
i
];
end
=
indexes
[
i
+
1
];
for
(
size_t
j
=
0
;
j
<
scales
[
i
];
++
j
)
{
for
(
size_t
index
=
start
;
index
<
end
-
1
;
++
index
)
{
result
.
push_back
(
result
.
back
()
+
level
[
index
+
1
]
-
level
[
index
]);
}
}
}
}
return
result
;
}
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/framework/lod_tensor.h
浏览文件 @
29616744
...
@@ -136,8 +136,5 @@ class LoDTensor : public Tensor {
...
@@ -136,8 +136,5 @@ class LoDTensor : public Tensor {
LoD
lod_
;
LoD
lod_
;
};
};
Vector
<
size_t
>
expand_lod
(
Vector
<
size_t
>
level
,
Vector
<
size_t
>
indexes
,
Vector
<
size_t
>
scales
,
bool
repeat
);
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/operators/seq_expand_op.cc
浏览文件 @
29616744
...
@@ -27,20 +27,14 @@ class SeqExpandOp : public framework::OperatorWithKernel {
...
@@ -27,20 +27,14 @@ class SeqExpandOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SeqExpandOp should not be null."
);
"Input(X) of SeqExpandOp should not be null."
);
int
repeat
=
ctx
->
Attrs
().
Get
<
int
>
(
"repeat"
);
framework
::
DDim
out_dim
;
if
(
repeat
==
0
)
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) of SeqExpandOp should not be null while repeat == 0."
);
out_dim
=
ctx
->
GetInputDim
(
"Y"
);
ctx
->
ShareLoD
(
"Y"
,
"Out"
);
}
else
{
out_dim
=
ctx
->
GetInputDim
(
"X"
);
out_dim
[
0
]
=
out_dim
[
0
]
*
repeat
;
}
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SeqExpandOp should not be null."
);
"Output(Out) of SeqExpandOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) of SeqExpandOp should not be null while repeat == 0."
);
framework
::
DDim
out_dim
;
out_dim
=
ctx
->
GetInputDim
(
"Y"
);
ctx
->
ShareLoD
(
"Y"
,
"Out"
);
ctx
->
SetOutputDim
(
"Out"
,
out_dim
);
ctx
->
SetOutputDim
(
"Out"
,
out_dim
);
}
}
};
};
...
@@ -50,68 +44,63 @@ class SeqExpandOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -50,68 +44,63 @@ class SeqExpandOpMaker : public framework::OpProtoAndCheckerMaker {
SeqExpandOpMaker
(
framework
::
OpProto
*
proto
,
SeqExpandOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
AddInput
(
"X"
,
"X"
,
"(Tensor or LoDTensor) The input('X') of this operator can be a "
"The input('X') of seq_expand op. It can be LoDTensor or base Tensor."
);
"LoDTensor or a base Tensor."
);
AddInput
(
AddInput
(
"Y"
,
"Y"
,
"(LoDTensor)The reference input('Y') of seq_expand op."
"The reference input('Y') of seq_expand op."
"It must be a LoDTensor with k-level(k>0)."
"It must be a LoDTensor with k-level(k>0)."
"Input(X) will be expanded according to LOD of input(Y)."
"This reference input is essential if 'repeat' attribute is not "
"The element numbers of last level in input('Y') "
"configured."
"must be equal to dims[0] of input('X')."
);
"Input(X) will be expanded by LoD of input(Y) while repeat == 0."
);
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"The output of seq_expand op."
"The output of seq_expand op."
"The output is a (k+1)-level LoDTensor"
"The lod of output will be as same as input(Y)'s lod."
);
"while input(X) being k-level LoDTensor."
"(Given base tensor is 0-level LoDTensor.)"
);
AddAttr
<
int
>
(
"repeat"
,
"(type:int; default value: 0)"
"Repeatting times of each element while expanding input(X)."
"It works while input(Y) is not configured."
)
.
SetDefault
(
0
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Expand k-level LoDTensor to (k+1)-level LoDTensor
Expand input(X) according to LOD of input(Y).
by lod of input(Y) or 'repeat' attribute.
Case 1:
Case 1:
Given a 2-level LoDTensor X:
Given 2-level a LoDTensor input(X)
X.data = [a, b , c, d]
X.lod = [[0, 2, 3],
X.lod = [[0, 3, 4], [0, 1, 3, 4]]
[0, 1, 3, 4]]
and
X.data = [a, b, c, d]
repeat = 2
X.dims = [4, 1]
then we get 3-level LoDTensor
and input(Y)
Out.lod = [[0, 6, 8],
Y.lod = [[0, 2, 4],
[0, 3, 6, 7, 8],
[0, 3, 6, 7, 8]]
[0, 1, 3, 4, 6, 7, 8]]
then we get 2-level LoDTensor
Out.data = [a, b, c, a, b, c, d, d]
Out.lod = [[0, 2, 4],
[0, 3, 6, 7, 8]]
Out.data = [a, a, a, b, b, b, c, d]
Out.dims = [8, 1]
Case 2:
Case 2:
Given 2-level a LoDTensor X
Given a 0-level LoDTensor input(X)
X.data = [1, 2, 3, 4]
X.data = [a, b, c]
X.lod = [[0, 3, 4], [0, 1, 3, 4]]
X.lod = NULL
and
X.dims = [3, 1]
Y.lod = [[0, 6, 8],
and input(Y)
[0, 3, 6, 7, 8],
Y.lod = [[0, 2, 3, 6]]
[0,1,3,4,6,7,8]]
then we get 1-level LoDTensor
then we get 3-level LoDTensor
Out.lod = [[0, 2, 3, 6]]
Out.data = [1, 2, 3, 1, 2, 3, 4, 4]
Out.data = [a, a, b, c, c, c]
Out.lod = [[0, 6, 8],
Out.dims = [6, 1]
[0, 3, 6, 7, 8],
[0, 1, 3, 4, 6, 7, 8]]
Case 3:
Case 3:
Given a 0-level LoDTensor
X
Given a 0-level LoDTensor
input(X)
X.data = [
1, 2, 3, 4
]
X.data = [
[a, b], [c, d], [e, f]
]
X.lod = NULL
X.lod = NULL
and
X.dims = [3, 2]
repeat = 2
and input(Y)
Y.lod = [[0, 2, 3, 6]]
then we get 1-level LoDTensor
then we get 1-level LoDTensor
Out.data = [1, 1, 2, 2, 3, 3, 4, 4]
Out.lod = [[0, 2, 3, 6]]
Out.lod = [[0, 2, 4, 6, 8]]
Out.data = [[a,b], [a,b] [c,d], [e, f], [e, f], [e, f]]
Out.dims = [6, 2]
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/seq_expand_op.h
浏览文件 @
29616744
...
@@ -31,93 +31,28 @@ class SeqExpandKernel : public framework::OpKernel<T> {
...
@@ -31,93 +31,28 @@ class SeqExpandKernel : public framework::OpKernel<T> {
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
auto
x_dims
=
x
->
dims
();
auto
x_dims
=
x
->
dims
();
auto
x_lod
=
x
->
lod
();
auto
*
y
=
context
.
Input
<
LoDTensor
>
(
"Y"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
y
->
lod
().
back
().
size
()
-
1
,
framework
::
Vector
<
size_t
>
level
;
"The size of last lod level in Input(Y)"
size_t
num
=
(
x_lod
.
size
()
==
0
)
?
(
x
->
dims
()[
0
]
+
1
)
:
x_lod
[
0
].
size
();
"must be equal to dims[0] of Input(X)."
);
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
out
->
set_lod
(
y
->
lod
());
level
.
push_back
(
i
);
out
->
Resize
(
y
->
dims
());
}
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
x_lod
.
push_back
(
level
);
size_t
repeat
=
static_cast
<
size_t
>
(
context
.
Attr
<
int
>
(
"repeat"
));
framework
::
Vector
<
size_t
>
scales
;
if
(
repeat
!=
0
)
{
for
(
int
i
=
0
;
i
<
x_lod
[
0
].
size
()
-
1
;
++
i
)
{
scales
.
push_back
(
repeat
);
}
std
::
vector
<
int64_t
>
dims
=
framework
::
vectorize
(
x
->
dims
());
dims
[
0
]
=
dims
[
0
]
*
repeat
;
auto
out_dims
=
framework
::
make_ddim
(
dims
);
out
->
Resize
(
out_dims
);
}
else
{
auto
*
y
=
context
.
Input
<
LoDTensor
>
(
"Y"
);
auto
y_lod
=
y
->
lod
();
auto
y_abs_lod
=
y_lod
.
ToAbsOffset
();
auto
x_abs_lod
=
x_lod
.
ToAbsOffset
();
for
(
int
i
=
0
;
i
<
y_abs_lod
[
0
].
size
()
-
1
;
++
i
)
{
scales
.
push_back
((
y_abs_lod
[
0
][
i
+
1
]
-
y_abs_lod
[
0
][
i
])
/
(
x_abs_lod
[
0
][
i
+
1
]
-
x_abs_lod
[
0
][
i
]));
}
out
->
Resize
(
y
->
dims
());
}
framework
::
Vector
<
size_t
>
indexes
;
for
(
int
size_t
i
=
0
;
i
<
x_lod
[
0
];
++
i
)
{
indexes
[
i
]
=
x_lod
[
0
];
}
framework
::
LoD
out_lod
;
auto
level0
=
framework
::
expand_lod
(
indexes
,
x_lod
[
0
],
scales
,
false
);
out_lod
.
push_back
(
level0
);
for
(
int
i
=
1
;
i
<
x_lod
.
size
();
++
i
)
{
for
(
int
j
=
0
;
j
<
indexes
.
size
();
++
j
)
{
indexes
[
j
]
=
x_lod
[
i
-
1
][
indexes
[
j
]];
}
out_lod
.
push_back
(
framework
::
expand_lod
(
x_lod
[
i
],
indexes
,
scales
,
true
));
}
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
out_starts
=
out
->
lod
().
back
();
// copy data
auto
place
=
context
.
GetPlace
();
for
(
size_t
i
=
0
;
i
<
out_starts
.
size
()
-
1
;
i
++
)
{
size_t
count
=
0
;
int
scale
=
out_starts
[
i
+
1
]
-
out_starts
[
i
];
if
(
platform
::
is_cpu_place
(
place
))
{
Eigen
::
TensorMap
<
auto
&
cpu_place
=
boost
::
get
<
platform
::
CPUPlace
>
(
place
);
Eigen
::
Tensor
<
const
T
,
2
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
for
(
size_t
i
=
0
;
i
<
scales
.
size
();
++
i
)
{
x_t
(
x_data
,
1
,
element_len
);
count
=
element_len
*
(
x_abs_lod
[
0
][
i
+
1
]
-
x_abs_lod
[
0
][
i
]);
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
2
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
for
(
size_t
j
=
0
;
j
<
scales
[
i
];
++
j
)
{
out_t
(
out_data
,
scale
,
element_len
);
memory
::
Copy
(
cpu_place
,
out_data
,
cpu_place
,
x_data
,
Eigen
::
array
<
int
,
2
>
cast
({
scale
,
1
});
sizeof
(
T
)
*
count
);
out_t
.
device
(
place
)
=
x_t
.
broadcast
(
cast
);
out_data
+=
count
;
x_data
+=
element_len
;
}
out_data
+=
element_len
*
scale
;
x_data
+=
count
;
}
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
&
gpu_place
=
boost
::
get
<
platform
::
GPUPlace
>
(
place
);
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
();
for
(
size_t
i
=
0
;
i
<
scales
.
size
();
++
i
)
{
count
=
element_len
*
(
x_abs_lod
[
0
][
i
+
1
]
-
x_abs_lod
[
0
][
i
]);
for
(
size_t
j
=
0
;
j
<
scales
[
i
];
++
j
)
{
memory
::
Copy
(
gpu_place
,
out_data
,
gpu_place
,
x_data
,
sizeof
(
T
)
*
count
,
stream
);
out_data
+=
count
;
}
x_data
+=
count
;
}
#else
PADDLE_THROW
(
"Paddle is not compiled with GPU"
);
#endif
}
out
->
set_lod
(
out_lod
);
for
(
size_t
i
=
0
;
i
<
lod
.
size
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
lod
[
i
].
size
();
j
++
)
{
LOG
(
INFO
)
<<
"lod["
<<
i
<<
"]["
<<
j
"] = "
<<
lod
[
i
][
j
];
}
}
}
}
}
};
};
...
@@ -130,25 +65,24 @@ class SeqExpandGradKernel : public framework::OpKernel<T> {
...
@@ -130,25 +65,24 @@ class SeqExpandGradKernel : public framework::OpKernel<T> {
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Input
<
LoDTensor
>
(
"Out"
);
auto
*
out
=
context
.
Input
<
LoDTensor
>
(
"Out"
);
auto
*
d_x
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_x
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
out_lod
=
out
->
lod
();
auto
out_last_level
=
out
->
lod
().
back
();
auto
out_abs_lod
=
out_lod
.
ToAbsOffset
();
d_x
->
set_lod
(
x
->
lod
());
d_x
->
set_lod
(
x
->
lod
());
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
auto
d_out_dims
=
d_out
->
dims
();
auto
d_out_dims
=
d_out
->
dims
();
T
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
size_t
element_len
=
framework
::
product
(
d_out_dims
)
/
d_out_dims
[
0
];
size_t
element_len
=
framework
::
product
(
d_out_dims
)
/
d_out_dims
[
0
];
for
(
size_t
i
=
0
;
i
<
out
->
NumElements
();
++
i
)
{
size_t
ele_count
=
out_abs_lod
[
0
][
i
+
1
]
-
out_abs_lod
[
0
][
i
];
for
(
size_t
i
=
0
;
i
<
out_last_level
.
size
()
-
1
;
++
i
)
{
size_t
repeat
=
out
->
NumElements
(
0
,
i
)
;
size_t
repeat
=
out
_last_level
[
i
+
1
]
-
out_last_level
[
i
]
;
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
const
T
,
2
>>
d_out_t
(
Eigen
::
TensorMap
<
d_out_data
,
static_cast
<
int
>
(
repeat
),
Eigen
::
Tensor
<
const
T
,
2
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
static_cast
<
int
>
((
ele_count
*
element_len
)
/
repeat
)
);
d_out_t
(
d_out_data
,
static_cast
<
int
>
(
repeat
),
element_len
);
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
1
>>
d_x_t
(
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
1
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
d_x_data
,
static_cast
<
int
>
((
ele_count
*
element_len
)
/
repeat
));
d_x_t
(
d_x_data
,
static_cast
<
int
>
(
element_len
));
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
d_x_t
.
device
(
place
)
=
d_out_t
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
d_x_t
.
device
(
place
)
=
d_out_t
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
d_out_data
+=
(
ele_coun
t
*
element_len
);
d_out_data
+=
(
repea
t
*
element_len
);
d_x_data
+=
((
ele_count
*
element_len
)
/
repeat
)
;
d_x_data
+=
element_len
;
}
}
}
}
};
};
...
...
python/paddle/v2/framework/tests/op_test.py
浏览文件 @
29616744
...
@@ -246,8 +246,6 @@ class OpTest(unittest.TestCase):
...
@@ -246,8 +246,6 @@ class OpTest(unittest.TestCase):
else
:
else
:
actual
=
np
.
array
(
self
.
scope
.
find_var
(
out_name
).
get_tensor
())
actual
=
np
.
array
(
self
.
scope
.
find_var
(
out_name
).
get_tensor
())
expect
=
self
.
outputs
[
out_name
]
expect
=
self
.
outputs
[
out_name
]
print
"actual= %s"
%
actual
print
"expect = %s"
%
expect
self
.
assertTrue
(
self
.
assertTrue
(
np
.
allclose
(
np
.
allclose
(
actual
,
expect
,
atol
=
atol
),
actual
,
expect
,
atol
=
atol
),
...
...
python/paddle/v2/framework/tests/test_seq_expand.py
浏览文件 @
29616744
...
@@ -3,66 +3,21 @@ import numpy as np
...
@@ -3,66 +3,21 @@ import numpy as np
from
op_test
import
OpTest
from
op_test
import
OpTest
def
repeat
(
list
,
starts
,
times
,
is_first
):
newlist
=
[
list
[
0
]]
if
is_first
:
for
i
,
time
in
enumerate
(
times
):
size
=
list
[
i
+
1
]
-
list
[
i
]
newlist
.
append
(
newlist
[
-
1
]
+
size
*
time
)
else
:
for
i
,
time
in
enumerate
(
times
):
start
=
list
.
index
(
starts
[
i
])
end
=
list
.
index
(
starts
[
i
+
1
])
+
1
for
t
in
range
(
time
):
for
index
in
range
(
start
,
end
-
1
):
newlist
.
append
(
newlist
[
-
1
]
+
list
[
index
+
1
]
-
list
[
index
])
return
newlist
def
repeat_array
(
array
,
starts
,
times
):
newlist
=
[]
for
i
,
time
in
enumerate
(
times
):
for
t
in
range
(
time
):
newlist
.
extend
(
array
[
starts
[
i
]:
starts
[
i
+
1
]])
return
newlist
def
toAbsOffset
(
lod
):
for
i
in
range
(
len
(
lod
)
-
2
,
-
1
,
-
1
):
for
j
in
range
(
len
(
lod
[
i
])):
lod
[
i
][
j
]
=
lod
[
i
+
1
][
lod
[
i
][
j
]]
return
lod
class
TestSeqExpand
(
OpTest
):
class
TestSeqExpand
(
OpTest
):
#class TestSeqExpand():
def
set_data
(
self
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
4
,
1
]).
astype
(
'float32'
)
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
3
,
1
]).
astype
(
'float32'
)
self
.
inputs
=
{
'X'
:
x_data
}
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
8
,
1
]).
astype
(
'float32'
)
self
.
repeat
=
2
y_lod
=
[[
0
,
1
,
4
,
8
]]
self
.
inputs
=
{
'X'
:
x_data
,
'Y'
:
(
y_data
,
y_lod
)}
def
compute
(
self
):
def
compute
(
self
):
x
=
self
.
inputs
[
'X'
]
x
=
self
.
inputs
[
'X'
]
print
"x= %s"
%
x
x_data
,
x_lod
=
x
if
type
(
x
)
==
tuple
else
(
x
,
None
)
x_data
,
x_lod
=
x
if
type
(
x
)
==
tuple
else
(
x
,
None
)
n
=
1
+
x_data
.
shape
[
0
]
if
not
x_lod
else
len
(
x_lod
[
0
])
n
=
1
+
x_data
.
shape
[
0
]
if
not
x_lod
else
len
(
x_lod
[
0
])
x_lod
=
[[
i
for
i
in
range
(
n
)]]
+
x_lod
y_data
,
y_lod
=
self
.
inputs
[
'Y'
]
x_abs_lod
=
toAbsOffset
(
x_lod
)
repeats
=
[((
y_lod
[
-
1
][
i
+
1
]
-
y_lod
[
-
1
][
i
]))
if
self
.
repeat
:
for
i
in
range
(
len
(
y_lod
[
-
1
])
-
1
)]
print
"repeat= %s"
%
self
.
repeat
out
=
x_data
.
repeat
(
repeats
,
axis
=
0
)
self
.
attrs
=
{
'repeat'
:
self
.
repeat
}
repeats
=
(
len
(
x_lod
[
0
])
-
1
)
*
[
self
.
repeat
]
else
:
y_data
,
y_lod
=
self
.
inputs
[
'Y'
]
print
"y_lod: %s"
%
y_lod
y_abs_lod
=
toAbsOffset
(
y_lod
)
repeats
=
[((
y_abs_lod
[
0
][
i
+
1
]
-
y_abs_lod
[
0
][
i
])
/
(
x_abs_lod
[
0
][
i
+
1
]
-
x_abs_lod
[
0
][
i
]))
for
i
in
range
(
len
(
y_abs_lod
[
0
])
-
1
)]
#out_lod = [repeat(x_lod[0], x_lod[0], repeats, True)] + [
# repeat(lod, x_lod[0], repeats, False) for lod in x_lod[1:]
#]
out
=
repeat_array
(
x_data
.
tolist
(),
x_abs_lod
[
0
],
repeats
)
self
.
outputs
=
{
'Out'
:
out
}
self
.
outputs
=
{
'Out'
:
out
}
def
setUp
(
self
):
def
setUp
(
self
):
...
@@ -78,39 +33,22 @@ class TestSeqExpand(OpTest):
...
@@ -78,39 +33,22 @@ class TestSeqExpand(OpTest):
class
TestSeqExpandCase1
(
TestSeqExpand
):
class
TestSeqExpandCase1
(
TestSeqExpand
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
7
,
1
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
2
,
3
],
[
0
,
2
,
5
,
7
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
)}
self
.
repeat
=
2
class
TestSeqExpandCase2
(
TestSeqExpand
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
4
,
1
]).
astype
(
'float32'
)
self
.
inputs
=
{
'X'
:
x_data
}
self
.
repeat
=
2
class
TestSeqExpandCase3
(
TestSeqExpand
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
3
,
1
]).
astype
(
'float32'
)
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
8
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
1
,
4
,
8
]]
self
.
inputs
=
{
'X'
:
x_data
,
'Y'
:
(
y_data
,
y_lod
)}
self
.
repeat
=
None
class
TestSeqExpandCase4
(
TestSeqExpand
):
def
set_data
(
self
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
5
,
1
]).
astype
(
'float32'
)
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
5
,
1
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
2
,
5
]]
x_lod
=
[[
0
,
2
,
5
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
1
]).
astype
(
'float32'
)
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
2
,
5
],
[
0
,
2
,
4
,
7
,
10
,
13
]]
y_lod
=
[[
0
,
2
,
5
],
[
0
,
2
,
4
,
7
,
10
,
13
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
self
.
repeat
=
None
class
TestSeqExpandCase2
(
TestSeqExpand
):
def
set_data
(
self
):
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
1
,
2
,
2
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
1
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
2
,
2
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
2
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
# TestSeqExpandCase4().setUp()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录