Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
292c1951
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
292c1951
编写于
2月 02, 2018
作者:
Q
qingqing01
提交者:
GitHub
2月 02, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7441 from hedaoyuan/inference
Some optimization of CNN model computation.
上级
148d35fe
784e5940
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
77 addition
and
69 deletion
+77
-69
paddle/function/GemmConvOp.cpp
paddle/function/GemmConvOp.cpp
+35
-28
paddle/function/Im2Col.h
paddle/function/Im2Col.h
+28
-25
paddle/function/Im2ColTest.cpp
paddle/function/Im2ColTest.cpp
+3
-3
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+11
-13
未找到文件。
paddle/function/GemmConvOp.cpp
浏览文件 @
292c1951
...
...
@@ -178,19 +178,22 @@ public:
real
*
inputData
=
inputs
[
0
].
data
<
real
>
();
real
*
filterData
=
inputs
[
1
].
data
<
real
>
();
real
*
outputData
=
outputs
[
0
].
data
<
real
>
();
real
*
colData
=
NULL
;
bool
needIm2col
=
isNeedIm2col
(
filter
);
TensorShape
imShape
=
TensorShape
({
inputChannels
/
groups_
,
inputHeight
,
inputWidth
});
TensorShape
colShape
;
real
*
colData
=
NULL
;
size_t
colHeight
=
inputChannels
/
groups_
*
filterHeight
*
filterWidth
;
size_t
colWidth
=
outputHeight
*
outputWidth
;
// Max col matrix height 256, Max col matrix width 1024
size_t
stepColHeight
=
std
::
min
(
colHeight
,
static_cast
<
size_t
>
(
256
));
size_t
stepColWidth
=
std
::
min
(
colWidth
,
static_cast
<
size_t
>
(
2048
));
// Max col matrix width 4096, Max col matrix size 4M.
size_t
outputHeightSteps
=
std
::
min
(
std
::
max
(
4096
/
outputWidth
,
(
size_t
)
1
),
outputHeight
);
size_t
maxColWidth
=
outputHeightSteps
*
outputWidth
;
size_t
channelSteps
=
std
::
min
(
std
::
max
((
1048576
/
maxColWidth
)
/
filterHeight
*
filterWidth
,
(
size_t
)
1
),
inputChannels
/
groups_
);
size_t
maxColHeight
=
channelSteps
*
filterHeight
*
filterWidth
;
if
(
needIm2col
)
{
colShape
=
TensorShape
({
inputChannels
/
groups_
,
...
...
@@ -199,7 +202,7 @@ public:
outputHeight
,
outputWidth
});
resizeBuffer
<
Device
>
(
stepColHeight
*
step
ColWidth
*
sizeof
(
real
));
resizeBuffer
<
Device
>
(
maxColHeight
*
max
ColWidth
*
sizeof
(
real
));
colData
=
reinterpret_cast
<
real
*>
(
memory_
->
getBuf
());
}
...
...
@@ -209,20 +212,24 @@ public:
(
outputChannels
/
groups_
)
*
outputHeight
*
outputWidth
;
size_t
filterOffset
=
filter
.
getElements
()
/
groups_
;
int
nStride
=
col
Width
;
int
kStride
=
colHeight
;
int
nStride
=
outputHeight
*
output
Width
;
int
kStride
=
inputChannels
/
groups_
*
filterHeight
*
filterWidth
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
filterData
=
inputs
[
1
].
data
<
real
>
();
for
(
size_t
g
=
0
;
g
<
groups_
;
g
++
)
{
if
(
needIm2col
)
{
real
beta_
=
beta
;
for
(
size_t
colHeightStart
=
0
;
colHeightStart
<
colHeight
;
colHeightStart
+=
stepColHeight
)
{
for
(
size_t
colWidthStart
=
0
;
colWidthStart
<
colWidth
;
colWidthStart
+=
stepColWidth
)
{
int
N
=
std
::
min
(
colWidth
-
colWidthStart
,
stepColWidth
);
int
K
=
std
::
min
(
colHeight
-
colHeightStart
,
stepColHeight
);
for
(
size_t
ic
=
0
;
ic
<
inputChannels
/
groups_
;
ic
+=
channelSteps
)
{
int
channels
=
std
::
min
(
inputChannels
/
groups_
-
ic
,
channelSteps
);
for
(
size_t
oh
=
0
;
oh
<
outputHeight
;
oh
+=
outputHeightSteps
)
{
int
height
=
std
::
min
(
outputHeight
-
oh
,
outputHeightSteps
);
int
M
=
outputChannels
/
groups_
;
int
N
=
height
*
outputWidth
;
int
K
=
channels
*
filterHeight
*
filterWidth
;
// im2col
im2col
(
inputData
+
g
*
inputOffset
,
im2col
(
inputData
,
imShape
,
colData
,
colShape
,
...
...
@@ -232,13 +239,12 @@ public:
paddingW
(),
dilationH
(),
dilationW
(),
c
olHeightStart
,
K
,
colWidthStar
t
,
c
hannels
,
oh
,
heigh
t
,
N
);
// gemm
int
M
=
outputChannels
/
groups_
;
BlasGemm
<
Device
,
real
>::
compute
(
false
,
false
,
...
...
@@ -246,12 +252,12 @@ public:
N
,
K
,
1.0
f
,
filterData
+
g
*
filterOffset
+
colHeightStart
,
filterData
+
ic
*
filterHeight
*
filterWidth
,
kStride
,
colData
,
N
,
beta_
,
outputData
+
g
*
outputOffset
+
colWidthStart
,
outputData
+
oh
*
outputWidth
,
nStride
);
}
beta_
=
1.0
;
...
...
@@ -266,17 +272,18 @@ public:
N
,
K
,
1.0
f
,
filterData
+
g
*
filterOffset
,
filterData
,
K
,
inputData
+
g
*
inputOffset
,
inputData
,
N
,
beta
,
outputData
+
g
*
outputOffset
,
outputData
,
N
);
}
inputData
+=
inputOffset
;
outputData
+=
outputOffset
;
filterData
+=
filterOffset
;
}
inputData
+=
inputChannels
*
inputHeight
*
inputWidth
;
outputData
+=
outputChannels
*
outputHeight
*
outputWidth
;
}
memory_
.
reset
();
...
...
paddle/function/Im2Col.h
浏览文件 @
292c1951
...
...
@@ -111,39 +111,42 @@ public:
int
paddingWidth
,
int
dilationHeight
,
int
dilationWidth
,
int
colHeightStart
,
int
col
HeightSize
,
int
col
WidthStar
t
,
int
colWidth
Size
)
{
int
inputChannels
,
int
col
Offset
,
int
col
OutputHeigh
t
,
int
colWidth
)
{
int
inputHeight
=
imShape
[
1
];
int
inputWidth
=
imShape
[
2
];
int
filterHeight
=
colShape
[
1
];
int
filterWidth
=
colShape
[
2
];
int
outputWidth
=
colShape
[
4
];
for
(
int
colh
=
0
;
colh
<
colHeightSize
;
colh
++
)
{
int
wOffset
=
(
colHeightStart
+
colh
)
%
filterWidth
;
int
hOffset
=
((
colHeightStart
+
colh
)
/
filterWidth
)
%
filterHeight
;
int
c_im
=
(
colHeightStart
+
colh
)
/
filterWidth
/
filterHeight
;
for
(
int
colw
=
0
;
colw
<
colWidthSize
;
colw
++
)
{
int
h
=
(
colWidthStart
+
colw
)
/
outputWidth
;
int
w
=
(
colWidthStart
+
colw
)
%
outputWidth
;
int
imRowIdx
=
h
*
strideHeight
+
hOffset
*
dilationHeight
;
int
imColIdx
=
w
*
strideWidth
+
wOffset
*
dilationWidth
;
if
((
imRowIdx
-
paddingHeight
)
<
0
||
(
imRowIdx
-
paddingHeight
)
>=
inputHeight
||
(
imColIdx
-
paddingWidth
)
<
0
||
(
imColIdx
-
paddingWidth
)
>=
inputWidth
)
{
colData
[
colh
*
colWidthSize
+
colw
]
=
static_cast
<
T
>
(
0
);
}
else
{
imRowIdx
+=
c_im
*
inputHeight
-
paddingHeight
;
imColIdx
-=
paddingWidth
;
colData
[
colh
*
colWidthSize
+
colw
]
=
imData
[
imRowIdx
*
inputWidth
+
imColIdx
];
for
(
int
ic
=
0
;
ic
<
inputChannels
;
ic
++
)
{
for
(
int
oh
=
0
;
oh
<
colOutputHeight
;
oh
++
)
{
T
*
dstData
=
colData
+
oh
*
outputWidth
;
for
(
int
fh
=
0
;
fh
<
filterHeight
;
fh
++
)
{
for
(
int
fw
=
0
;
fw
<
filterWidth
;
fw
++
)
{
int
imRowIdx
=
(
oh
+
colOffset
)
*
strideHeight
+
fh
*
dilationHeight
-
paddingHeight
;
if
(
imRowIdx
<
0
||
imRowIdx
>=
inputHeight
)
{
memset
(
dstData
,
0
,
outputWidth
*
sizeof
(
T
));
}
else
{
for
(
int
ow
=
0
;
ow
<
outputWidth
;
ow
++
)
{
int
imColIdx
=
ow
*
strideWidth
+
fw
*
dilationWidth
-
paddingWidth
;
if
(
imColIdx
<
0
||
imColIdx
>=
inputWidth
)
{
dstData
[
ow
]
=
T
(
0
);
}
else
{
dstData
[
ow
]
=
imData
[
imRowIdx
*
inputWidth
+
imColIdx
];
}
}
}
dstData
+=
colWidth
;
}
}
}
colData
+=
filterHeight
*
filterWidth
*
colWidth
;
imData
+=
inputHeight
*
inputWidth
;
}
}
};
...
...
paddle/function/Im2ColTest.cpp
浏览文件 @
292c1951
...
...
@@ -202,10 +202,10 @@ void TestIm2ColMobileFunctor() {
padding
,
dilation
,
dilation
,
channels
,
0
,
height
,
0
,
width
);
outputHeight
,
outputHeight
*
outputWidth
);
autotest
::
TensorCheckEqual
(
*
output1
,
*
output2
);
}
...
...
paddle/math/Matrix.cpp
浏览文件 @
292c1951
...
...
@@ -2015,13 +2015,6 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat,
CHECK_EQ
(
channels
*
outLength
,
maskMatP
->
getWidth
());
}
/* initialize the data_ */
for
(
size_t
i
=
0
;
i
<
height_
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
width_
;
j
++
)
{
outData
[
i
*
outStride
+
j
]
=
-
(
real
)
FLT_MAX
;
}
}
/* pool max one by one */
for
(
size_t
n
=
0
;
n
<
num
;
++
n
)
{
// frame by frame
if
(
!
isContiguous
())
{
...
...
@@ -2030,19 +2023,24 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat,
for
(
size_t
c
=
0
;
c
<
channels
;
++
c
)
{
// channel by channel
for
(
size_t
ph
=
0
;
ph
<
outputH
;
++
ph
)
{
int
hstart
=
ph
*
strideH
-
paddingH
;
int
hend
=
std
::
min
(
hstart
+
sizeY
,
imgSizeH
);
hstart
=
std
::
max
(
hstart
,
0
);
int
hend
=
hstart
+
sizeY
;
hstart
=
hstart
<
0
?
0
:
hstart
;
hend
=
hend
<
(
int
)
imgSizeH
?
hend
:
(
int
)
imgSizeH
;
for
(
size_t
pw
=
0
;
pw
<
outputW
;
++
pw
)
{
int
wstart
=
pw
*
strideW
-
paddingW
;
int
wend
=
std
::
min
(
wstart
+
sizeX
,
imgSizeW
);
wstart
=
std
::
max
(
wstart
,
0
);
int
wend
=
wstart
+
sizeX
;
wstart
=
wstart
<
0
?
0
:
wstart
;
wend
=
wend
<
(
int
)
imgSizeW
?
wend
:
(
int
)
imgSizeW
;
if
(
maskData
==
NULL
)
{
real
tmp
=
-
(
real
)
FLT_MAX
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
outData
[
ph
*
outputW
+
pw
]
=
std
::
max
(
outData
[
ph
*
outputW
+
pw
],
inputData
[
h
*
imgSizeW
+
w
]);
tmp
=
tmp
<
inputData
[
h
*
imgSizeW
+
w
]
?
inputData
[
h
*
imgSizeW
+
w
]
:
tmp
;
}
}
outData
[
ph
*
outputW
+
pw
]
=
tmp
;
}
else
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录