Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2669aea6
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
2669aea6
编写于
4月 03, 2018
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
sgd_op support optimize SelectedRows
上级
faa752a4
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
121 addition
and
51 deletion
+121
-51
paddle/fluid/framework/selected_rows.cc
paddle/fluid/framework/selected_rows.cc
+11
-1
paddle/fluid/framework/selected_rows.h
paddle/fluid/framework/selected_rows.h
+12
-1
paddle/fluid/operators/sgd_op.cc
paddle/fluid/operators/sgd_op.cc
+18
-6
paddle/fluid/operators/sgd_op.h
paddle/fluid/operators/sgd_op.h
+80
-43
未找到文件。
paddle/fluid/framework/selected_rows.cc
浏览文件 @
2669aea6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
@@ -13,6 +16,13 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
size_t
GetIndex
(
const
std
::
vector
<
int64_t
>&
rows
,
int64_t
value
)
{
auto
it
=
std
::
find
(
rows
.
begin
(),
rows
.
end
(),
value
);
PADDLE_ENFORCE
(
it
!=
rows
.
end
(),
"id should be in rows"
);
return
static_cast
<
size_t
>
(
std
::
distance
(
rows
.
begin
(),
it
));
}
void
SerializeToStream
(
std
::
ostream
&
os
,
const
SelectedRows
&
selected_rows
,
const
platform
::
DeviceContext
&
dev_ctx
)
{
{
// the 1st field, uint32_t version
...
...
paddle/fluid/framework/selected_rows.h
浏览文件 @
2669aea6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
@@ -10,6 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
...
...
@@ -59,6 +65,11 @@ class SelectedRows {
int64_t
height_
;
};
/**
* Find the index of value in rows.
*/
size_t
GetIndex
(
const
std
::
vector
<
int64_t
>&
rows
,
int64_t
value
);
/*
* Serialize/Desiralize SelectedRows to std::ostream
* You can pass ofstream or ostringstream to serilize to file
...
...
paddle/fluid/operators/sgd_op.cc
浏览文件 @
2669aea6
...
...
@@ -43,9 +43,19 @@ class SGDOp : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Param"
)
->
type
()),
ctx
.
GetPlace
());
auto
*
table_var
=
ctx
.
InputVar
(
"Param"
);
if
(
table_var
->
IsType
<
framework
::
LoDTensor
>
())
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
table_var
->
Get
<
framework
::
LoDTensor
>
().
type
()),
ctx
.
device_context
());
}
else
if
(
table_var
->
IsType
<
framework
::
SelectedRows
>
())
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
table_var
->
Get
<
framework
::
SelectedRows
>
().
value
().
type
()),
ctx
.
device_context
());
}
else
{
PADDLE_THROW
(
"Param should be LoDTensor or SelectedRows"
);
}
}
};
...
...
@@ -53,10 +63,12 @@ class SGDOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SGDOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Param"
,
"(Tensor) Input parameter"
);
AddInput
(
"Param"
,
"(Tensor
or SelectedRows
) Input parameter"
);
AddInput
(
"LearningRate"
,
"(Tensor) Learning rate of SGD"
);
AddInput
(
"Grad"
,
"(Tensor) Input gradient"
);
AddOutput
(
"ParamOut"
,
"(Tensor) Output parameter"
);
AddInput
(
"Grad"
,
"(Tensor or SelectedRows) Input gradient"
);
AddOutput
(
"ParamOut"
,
"(Tensor or SelectedRows, same with Param) "
"Output parameter, should share the same memory with Param"
);
AddComment
(
R"DOC(
SGD operator
...
...
paddle/fluid/operators/sgd_op.h
浏览文件 @
2669aea6
...
...
@@ -23,60 +23,97 @@ namespace operators {
template
<
typename
T
>
class
SGDOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
*
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
// Actually, all tensors are LoDTensor except SelectedRows.
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
o
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
*
lr
=
learning_rate
->
data
<
T
>
();
o
=
p
-
lr
[
0
]
*
g
;
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
// This manual optimization brings difficulty to track data dependency.
// It's better to find a more elegant solution.
PADDLE_ENFORCE_EQ
(
param
,
param_out
);
auto
*
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
if
(
param_var
->
IsType
<
framework
::
LoDTensor
>
())
{
const
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
*
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
// Actually, all tensors are LoDTensor except SelectedRows.
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
*
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
o
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
*
lr
=
learning_rate
->
data
<
T
>
();
o
=
p
-
lr
[
0
]
*
g
;
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
// This manual optimization brings difficulty to track data dependency.
// It's better to find a more elegant solution.
PADDLE_ENFORCE_EQ
(
param
,
param_out
);
const
auto
*
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
// for distributed training, a sparse var may be empty,
// just skip updating.
if
(
grad
->
rows
().
size
()
==
0
)
{
return
;
}
auto
grad_height
=
grad
->
height
();
auto
out_dims
=
param_out
->
dims
();
PADDLE_ENFORCE_EQ
(
grad_height
,
out_dims
[
0
]);
auto
&
grad_value
=
grad
->
value
();
auto
&
grad_rows
=
grad
->
rows
();
size_t
grad_row_numel
=
grad_value
.
numel
()
/
grad_rows
.
size
();
PADDLE_ENFORCE_EQ
(
grad_row_numel
,
param_out
->
numel
()
/
grad_height
);
auto
*
grad_data
=
grad_value
.
data
<
T
>
();
auto
*
out_data
=
param_out
->
data
<
T
>
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
grad_rows
.
size
();
i
++
)
{
PADDLE_ENFORCE
(
grad_rows
[
i
]
<
grad_height
,
"Input rows index should less than height"
);
for
(
int64_t
j
=
0
;
j
<
grad_row_numel
;
j
++
)
{
out_data
[
grad_rows
[
i
]
*
grad_row_numel
+
j
]
-=
lr
[
0
]
*
grad_data
[
i
*
grad_row_numel
+
j
];
}
}
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
}
}
else
if
(
param_var
->
IsType
<
framework
::
SelectedRows
>
())
{
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
(),
"when param "
"is SelectedRows, gradient should also be SelectedRows"
);
const
auto
&
param
=
param_var
->
Get
<
framework
::
SelectedRows
>
();
auto
*
param_out
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
"ParamOut"
);
const
auto
&
grad
=
grad_var
->
Get
<
framework
::
SelectedRows
>
();
// for distributed training, a sparse var may be empty,
// just skip updating.
if
(
grad
->
rows
().
size
()
==
0
)
{
if
(
grad
.
rows
().
size
()
==
0
)
{
return
;
}
auto
in_height
=
grad
->
height
();
auto
out_dims
=
param_out
->
dims
();
PADDLE_ENFORCE_EQ
(
in_height
,
out_dims
[
0
]);
auto
&
in_value
=
grad
->
value
();
auto
&
in_rows
=
grad
->
rows
();
size_t
param_row_width
=
param
.
value
().
numel
()
/
param
.
rows
().
size
();
size_t
grad_row_width
=
grad
.
value
().
numel
()
/
grad
.
rows
().
size
();
PADDLE_ENFORCE_EQ
(
param_row_width
,
grad_row_width
,
"param_row should have the same size with grad_row"
);
int64_t
in_row_numel
=
in_value
.
numel
()
/
in_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in_row_numel
,
param_out
->
numel
()
/
in_height
);
auto
*
in_data
=
in_value
.
data
<
T
>
();
auto
*
out_data
=
param_out
->
data
<
T
>
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
in_rows
.
size
();
i
++
)
{
PADDLE_ENFORCE
(
in_rows
[
i
]
<
in_height
,
const
auto
*
lr
=
learning_rate
->
data
<
T
>
();
const
auto
*
grad_data
=
grad
.
value
().
data
<
T
>
();
auto
*
out_data
=
param_out
->
mutable_value
()
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
grad
.
rows
().
size
();
i
++
)
{
PADDLE_ENFORCE
(
grad
.
rows
()[
i
]
<
grad
.
height
(),
"Input rows index should less than height"
);
for
(
int64_t
j
=
0
;
j
<
in_row_numel
;
j
++
)
{
out_data
[
in_rows
[
i
]
*
in_row_numel
+
j
]
-=
lr
[
0
]
*
in_data
[
i
*
in_row_numel
+
j
];
size_t
id_index
=
framework
::
GetIndex
(
param
.
rows
(),
grad
.
rows
()[
i
]);
for
(
int64_t
j
=
0
;
j
<
grad_row_width
;
j
++
)
{
out_data
[
id_index
*
grad_row_width
+
j
]
-=
lr
[
0
]
*
grad_data
[
i
*
grad_row_width
+
j
];
}
}
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of
Grad
"
);
PADDLE_THROW
(
"Unsupported Variable Type of
Parameter
"
);
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录