Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2573ac14
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
2573ac14
编写于
10月 25, 2017
作者:
D
Dong Zhihong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"remove python side test case to another PR."
上级
4e165f4e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
121 addition
and
320 deletion
+121
-320
paddle/operators/nccl_op_test.cu
paddle/operators/nccl_op_test.cu
+121
-198
python/paddle/v2/framework/tests/test_nccl_allreduce_op.py
python/paddle/v2/framework/tests/test_nccl_allreduce_op.py
+0
-97
python/paddle/v2/framework/tests/test_nccl_reduce_op.py
python/paddle/v2/framework/tests/test_nccl_reduce_op.py
+0
-25
未找到文件。
paddle/operators/nccl_op_test.cu
浏览文件 @
2573ac14
...
...
@@ -126,213 +126,40 @@ class NCCLTester : public ::testing::Test {
std
::
mutex
mu
;
};
// // ncclInitOp with desc
// TEST(NCCL, ncclInitOp) {
// std::unique_ptr<f::OpDescBind> op_desc(new f::OpDescBind);
// op_desc->SetType("ncclInit");
// op_desc->SetOutput("Communicator", {"x1"});
// op_desc->SetAttr("gpus", {gpu_list});
// f::Scope g_scope;
// std::unique_ptr<p::DeviceContext> ctx(new
// p::CPUDeviceContext(p::CPUPlace()));
// auto *var = g_scope.Var("x1");
// var->GetMutable<p::Communicator>();
// auto op = f::OpRegistry::CreateOp(*op_desc);
// VLOG(1) << "invoke NCCLInitOp.";
// op->Run(g_scope, *ctx.get());
// VLOG(1) << "NCCLInitOp finished.";
// }
// // ncclAllReduceOp with desc
// TEST_F(NCCLTester, ncclAllReduceOp) {
// std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
// op2->SetType("ncclAllReduce");
// op2->SetInput("X", {"st"});
// op2->SetInput("Communicator", {"comm"});
// op2->SetOutput("Out", {"rt"});
// std::vector<f::Scope *> dev_scopes;
// std::vector<std::thread> ths;
// for (size_t i = 0; i < gpu_list.size(); ++i) {
// dev_scopes.emplace_back(&g_scope.NewScope());
// std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
// *op2.get(), dev_scopes[i]);
// ths.emplace_back(std::move(th));
// }
// for (size_t i = 0; i < gpu_list.size(); ++i) {
// ths[i].join();
// }
// // check results
// float result = std::accumulate(gpu_list.begin(), gpu_list.end(), 0);
// for (size_t i = 0; i < dev_scopes.size(); ++i) {
// p::CPUPlace cpu_place;
// p::GPUPlace gpu_place(gpu_list[i]);
// auto &recv_tensor = dev_scopes[i]->FindVar("rt")->Get<f::LoDTensor>();
// auto *rt = recv_tensor.data<float>();
// auto *result_tensor =
// dev_scopes[i]->Var("ct")->GetMutable<f::LoDTensor>();
// result_tensor->Resize(kDims);
// auto *ct = result_tensor->mutable_data<float>(cpu_place);
// paddle::memory::Copy(
// cpu_place, ct, p::GPUPlace(gpu_list[i]), rt,
// recv_tensor.numel() * sizeof(float),
// static_cast<p::CUDADeviceContext *>(dev_ctxs[i])->stream());
// for (size_t j = 0; j < f::product(kDims); ++j) {
// ASSERT_NEAR(ct[j], result, 1e-5);
// }
// }
// }
// // ncclAReduceOp with desc
// TEST_F(NCCLTester, ncclReduceOp) {
// std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
// const int kRoot = 0;
// op2->SetType("ncclReduce");
// op2->SetInput("X", {"st"});
// op2->SetInput("Communicator", {"comm"});
// op2->SetOutput("Out", {"rt"});
// op2->SetAttr("root", {kRoot});
// std::vector<f::Scope *> dev_scopes;
// std::vector<std::thread> ths;
// for (size_t i = 0; i < gpu_list.size(); ++i) {
// dev_scopes.emplace_back(&g_scope.NewScope());
// std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
// *op2.get(), dev_scopes[i]);
// ths.emplace_back(std::move(th));
// }
// for (size_t i = 0; i < gpu_list.size(); ++i) {
// ths[i].join();
// }
// // check results on
// float result = std::accumulate(gpu_list.begin(), gpu_list.end(), 0);
// p::CPUPlace cpu_place;
// p::GPUPlace gpu_place(gpu_list[kRoot]);
// auto &recv_tensor = dev_scopes[kRoot]->FindVar("rt")->Get<f::LoDTensor>();
// auto *rt = recv_tensor.data<float>();
// auto *result_tensor =
// dev_scopes[kRoot]->Var("ct")->GetMutable<f::LoDTensor>();
// result_tensor->Resize(kDims);
// auto *ct = result_tensor->mutable_data<float>(cpu_place);
// paddle::memory::Copy(
// cpu_place, ct, p::GPUPlace(gpu_list[kRoot]), rt,
// recv_tensor.numel() * sizeof(float),
// static_cast<p::CUDADeviceContext *>(dev_ctxs[kRoot])->stream());
// for (int j = 0; j < f::product(kDims); ++j) {
// ASSERT_NEAR(ct[j], result, 1e-5);
// }
// }
// // // ncclBcastOp with desc
// TEST_F(NCCLTester, ncclBcastOp) {
// std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
// const int kRoot = 5;
// op2->SetType("ncclBcast");
// op2->SetInput("X", {"st"});
// op2->SetInput("Communicator", {"comm"});
// op2->SetOutput("Out", {"rt"});
// op2->SetAttr("root", {kRoot});
// std::vector<f::Scope *> dev_scopes;
// std::vector<std::thread> ths;
// for (size_t i = 0; i < gpu_list.size(); ++i) {
// dev_scopes.emplace_back(&g_scope.NewScope());
// std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
// *op2.get(), dev_scopes[i]);
// ths.emplace_back(std::move(th));
// }
// for (size_t i = 0; i < gpu_list.size(); ++i) {
// ths[i].join();
// }
// const int idx = 1;
// // check results on
// float result = kRoot;
// p::CPUPlace cpu_place;
// p::GPUPlace gpu_place(gpu_list[idx]);
// auto &recv_tensor = dev_scopes[idx]->FindVar("rt")->Get<f::LoDTensor>();
// auto *rt = recv_tensor.data<float>();
// auto *result_tensor =
// dev_scopes[idx]->Var("ct")->GetMutable<f::LoDTensor>();
// result_tensor->Resize(kDims);
// auto *ct = result_tensor->mutable_data<float>(cpu_place);
// paddle::memory::Copy(
// cpu_place, ct, p::GPUPlace(gpu_list[idx]), rt,
// recv_tensor.numel() * sizeof(float),
// static_cast<p::CUDADeviceContext *>(dev_ctxs[idx])->stream());
// for (size_t j = 0; j < f::product(kDims); ++j) {
// ASSERT_NEAR(ct[j], result, 1e-5);
// }
// }
// joint ncclBcastOp and ncclReduceOp
TEST_F
(
NCCLTester
,
MultipleOp
)
{
const
int
kRoot
=
0
;
std
::
unique_ptr
<
f
::
OpDescBind
>
op1
(
new
f
::
OpDescBind
);
op1
->
SetType
(
"ncclReduce"
);
op1
->
SetInput
(
"X"
,
{
"st"
});
op1
->
SetInput
(
"Communicator"
,
{
"comm"
});
op1
->
SetOutput
(
"Out"
,
{
"rt"
});
op1
->
SetAttr
(
"root"
,
{
kRoot
});
// ncclInitOp with desc
TEST
(
NCCL
,
ncclInitOp
)
{
std
::
unique_ptr
<
f
::
OpDescBind
>
op_desc
(
new
f
::
OpDescBind
);
op_desc
->
SetType
(
"ncclInit"
);
op_desc
->
SetOutput
(
"Communicator"
,
{
"x1"
});
op_desc
->
SetAttr
(
"gpus"
,
{
gpu_list
});
f
::
Scope
g_scope
;
std
::
unique_ptr
<
p
::
DeviceContext
>
ctx
(
new
p
::
CPUDeviceContext
(
p
::
CPUPlace
()));
auto
*
var
=
g_scope
.
Var
(
"x1"
);
var
->
GetMutable
<
p
::
Communicator
>
();
auto
op
=
f
::
OpRegistry
::
CreateOp
(
*
op_desc
);
VLOG
(
1
)
<<
"invoke NCCLInitOp."
;
op
->
Run
(
g_scope
,
*
ctx
.
get
());
VLOG
(
1
)
<<
"NCCLInitOp finished."
;
}
// ncclAllReduceOp with desc
TEST_F
(
NCCLTester
,
ncclAllReduceOp
)
{
std
::
unique_ptr
<
f
::
OpDescBind
>
op2
(
new
f
::
OpDescBind
);
op2
->
SetType
(
"nccl
Bcast
"
);
op2
->
SetInput
(
"X"
,
{
"
r
t"
});
op2
->
SetType
(
"nccl
AllReduce
"
);
op2
->
SetInput
(
"X"
,
{
"
s
t"
});
op2
->
SetInput
(
"Communicator"
,
{
"comm"
});
op2
->
SetOutput
(
"Out"
,
{
"out"
});
op2
->
SetAttr
(
"root"
,
{
kRoot
});
op2
->
SetOutput
(
"Out"
,
{
"rt"
});
std
::
vector
<
f
::
Scope
*>
dev_scopes
;
// for (size_t i = 0; i < dev_scopes.size(); ++i) {
// dev_scopes[i]->Var("out")->GetMutable<f::LoDTensor>();
// }
std
::
vector
<
std
::
thread
>
ths
;
// run Reduce
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
dev_scopes
.
emplace_back
(
&
g_scope
.
NewScope
());
std
::
thread
th
(
&
NCCLTester
::
PerThreadProgram
<
float
>
,
this
,
gpu_list
[
i
],
*
op1
.
get
(),
dev_scopes
[
i
]);
ths
.
emplace_back
(
std
::
move
(
th
));
}
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
ths
[
i
].
join
();
}
ths
.
clear
();
// run Bcast
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
dev_scopes
[
i
]
->
Var
(
"out"
)
->
GetMutable
<
f
::
LoDTensor
>
();
std
::
thread
th
(
&
NCCLTester
::
PerThreadProgram
<
float
>
,
this
,
gpu_list
[
i
],
*
op2
.
get
(),
dev_scopes
[
i
]);
ths
.
emplace_back
(
std
::
move
(
th
));
...
...
@@ -360,12 +187,108 @@ TEST_F(NCCLTester, MultipleOp) {
recv_tensor
.
numel
()
*
sizeof
(
float
),
static_cast
<
p
::
CUDADeviceContext
*>
(
dev_ctxs
[
i
])
->
stream
());
for
(
in
t
j
=
0
;
j
<
f
::
product
(
kDims
);
++
j
)
{
for
(
size_
t
j
=
0
;
j
<
f
::
product
(
kDims
);
++
j
)
{
ASSERT_NEAR
(
ct
[
j
],
result
,
1e-5
);
}
}
}
// ncclAReduceOp with desc
TEST_F
(
NCCLTester
,
ncclReduceOp
)
{
std
::
unique_ptr
<
f
::
OpDescBind
>
op2
(
new
f
::
OpDescBind
);
const
int
kRoot
=
0
;
op2
->
SetType
(
"ncclReduce"
);
op2
->
SetInput
(
"X"
,
{
"st"
});
op2
->
SetInput
(
"Communicator"
,
{
"comm"
});
op2
->
SetOutput
(
"Out"
,
{
"rt"
});
op2
->
SetAttr
(
"root"
,
{
kRoot
});
std
::
vector
<
f
::
Scope
*>
dev_scopes
;
std
::
vector
<
std
::
thread
>
ths
;
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
dev_scopes
.
emplace_back
(
&
g_scope
.
NewScope
());
std
::
thread
th
(
&
NCCLTester
::
PerThreadProgram
<
float
>
,
this
,
gpu_list
[
i
],
*
op2
.
get
(),
dev_scopes
[
i
]);
ths
.
emplace_back
(
std
::
move
(
th
));
}
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
ths
[
i
].
join
();
}
// check results on
float
result
=
std
::
accumulate
(
gpu_list
.
begin
(),
gpu_list
.
end
(),
0
);
p
::
CPUPlace
cpu_place
;
p
::
GPUPlace
gpu_place
(
gpu_list
[
kRoot
]);
auto
&
recv_tensor
=
dev_scopes
[
kRoot
]
->
FindVar
(
"rt"
)
->
Get
<
f
::
LoDTensor
>
();
auto
*
rt
=
recv_tensor
.
data
<
float
>
();
auto
*
result_tensor
=
dev_scopes
[
kRoot
]
->
Var
(
"ct"
)
->
GetMutable
<
f
::
LoDTensor
>
();
result_tensor
->
Resize
(
kDims
);
auto
*
ct
=
result_tensor
->
mutable_data
<
float
>
(
cpu_place
);
paddle
::
memory
::
Copy
(
cpu_place
,
ct
,
p
::
GPUPlace
(
gpu_list
[
kRoot
]),
rt
,
recv_tensor
.
numel
()
*
sizeof
(
float
),
static_cast
<
p
::
CUDADeviceContext
*>
(
dev_ctxs
[
kRoot
])
->
stream
());
for
(
int
j
=
0
;
j
<
f
::
product
(
kDims
);
++
j
)
{
ASSERT_NEAR
(
ct
[
j
],
result
,
1e-5
);
}
}
// // ncclBcastOp with desc
TEST_F
(
NCCLTester
,
ncclBcastOp
)
{
std
::
unique_ptr
<
f
::
OpDescBind
>
op2
(
new
f
::
OpDescBind
);
const
int
kRoot
=
5
;
op2
->
SetType
(
"ncclBcast"
);
op2
->
SetInput
(
"X"
,
{
"st"
});
op2
->
SetInput
(
"Communicator"
,
{
"comm"
});
op2
->
SetOutput
(
"Out"
,
{
"rt"
});
op2
->
SetAttr
(
"root"
,
{
kRoot
});
std
::
vector
<
f
::
Scope
*>
dev_scopes
;
std
::
vector
<
std
::
thread
>
ths
;
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
dev_scopes
.
emplace_back
(
&
g_scope
.
NewScope
());
std
::
thread
th
(
&
NCCLTester
::
PerThreadProgram
<
float
>
,
this
,
gpu_list
[
i
],
*
op2
.
get
(),
dev_scopes
[
i
]);
ths
.
emplace_back
(
std
::
move
(
th
));
}
for
(
size_t
i
=
0
;
i
<
gpu_list
.
size
();
++
i
)
{
ths
[
i
].
join
();
}
const
int
idx
=
1
;
// check results on
float
result
=
kRoot
;
p
::
CPUPlace
cpu_place
;
p
::
GPUPlace
gpu_place
(
gpu_list
[
idx
]);
auto
&
recv_tensor
=
dev_scopes
[
idx
]
->
FindVar
(
"rt"
)
->
Get
<
f
::
LoDTensor
>
();
auto
*
rt
=
recv_tensor
.
data
<
float
>
();
auto
*
result_tensor
=
dev_scopes
[
idx
]
->
Var
(
"ct"
)
->
GetMutable
<
f
::
LoDTensor
>
();
result_tensor
->
Resize
(
kDims
);
auto
*
ct
=
result_tensor
->
mutable_data
<
float
>
(
cpu_place
);
paddle
::
memory
::
Copy
(
cpu_place
,
ct
,
p
::
GPUPlace
(
gpu_list
[
idx
]),
rt
,
recv_tensor
.
numel
()
*
sizeof
(
float
),
static_cast
<
p
::
CUDADeviceContext
*>
(
dev_ctxs
[
idx
])
->
stream
());
for
(
size_t
j
=
0
;
j
<
f
::
product
(
kDims
);
++
j
)
{
ASSERT_NEAR
(
ct
[
j
],
result
,
1e-5
);
}
}
int
main
(
int
argc
,
char
**
argv
)
{
const
int
dev_count
=
p
::
GetCUDADeviceCount
();
if
(
dev_count
<=
1
)
{
...
...
python/paddle/v2/framework/tests/test_nccl_allreduce_op.py
已删除
100644 → 0
浏览文件 @
4e165f4e
import
unittest
,
os
from
threading
import
Thread
import
numpy
as
np
import
paddle.v2
as
paddle
from
paddle.v2.framework.op
import
Operator
import
paddle.v2.framework.core
as
core
from
op_test
import
OpTest
,
create_op
,
set_input
# gpu_list = os.environ["NV_LIST"]
gpu_list
=
"0,1,2,3"
if
not
core
.
is_compile_gpu
()
or
not
gpu_list
:
exit
(
0
)
g_scope
=
core
.
Scope
()
g_ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
gpus
=
[
int
(
g
)
for
g
in
gpu_list
.
split
(
","
)]
# ground truth
def
allreduce
(
tensors
,
gpus
):
num_device
=
len
(
gpus
)
assert
(
len
(
tensors
)
==
num_device
),
"not match of tensor and device"
Out
=
tensors
for
i
in
range
(
1
,
len
(
tensors
)):
Out
[
0
]
+=
Out
[
i
]
for
i
in
range
(
1
,
len
(
tensors
)):
Out
[
i
]
=
Out
[
0
]
return
Out
input_data
=
[
np
.
random
.
random
((
32
,
32
)).
astype
(
"float32"
)
for
i
in
range
(
len
(
gpus
))
]
output_data
=
allreduce
(
input_data
,
gpus
)
def
thread_allreduce_op
(
thread_id
,
gpu_id
):
i
=
gpu_id
scope
=
g_scope
.
new_scope
()
place
=
core
.
GPUPlace
(
gpus
[
i
])
inputs
=
{
"X"
:
input_data
[
i
],
"Communicator"
:
scope
.
find_var
(
"Communicator"
)
}
outputs
=
{
"Out"
:
output_data
[
i
]}
op
=
create_op
(
scope
,
"ncclAllReduce"
,
inputs
,
outputs
,
attrs
=
{})
place
=
core
.
GPUPlace
(
gpus
[
i
])
set_input
(
scope
,
op
,
inputs
,
place
)
ctx
=
core
.
DeviceContext
.
create
(
place
)
print
"thread_id : "
,
thread_id
,
"gpu_id : "
,
gpu_id
,
" invoke allreduce"
op
.
run
(
scope
,
ctx
)
print
"thread_id : "
,
thread_id
,
"gpu_id : "
,
gpu_id
,
" allreduce Done."
class
TestNCCLAllReduce
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
op_type
=
"ncclAllReduce"
nccl_init
=
create_op
(
g_scope
,
op_type
=
"ncclInit"
,
inputs
=
{},
outputs
=
{
"Communicator"
:
g_scope
.
var
(
"Communicator"
).
get_communicator
()
},
attrs
=
{
"gpus"
:
gpus
})
nccl_init
.
run
(
g_scope
,
g_ctx
)
def
test_output
(
self
):
ops
=
[]
for
i
in
range
(
len
(
gpus
)):
th
=
Thread
(
target
=
thread_allreduce_op
,
args
=
(
i
,
gpus
[
i
],
))
th
.
start
()
ops
.
append
(
th
)
for
t
in
ops
:
t
.
join
()
idx
=
0
for
out_name
,
out_dup
in
Operator
.
get_op_outputs
(
self
.
op_type
):
actual
=
np
.
array
(
g_scope
.
find_var
(
out_name
).
get_tensor
())
expect
=
output_data
[
idx
]
idx
+=
1
self
.
assertTrue
(
actual
,
expect
),
"has diff"
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_nccl_reduce_op.py
已删除
100644 → 0
浏览文件 @
4e165f4e
import
unittest
,
os
import
numpy
as
np
import
paddle.v2
as
paddle
from
paddle.v2.framework.op
import
Operator
import
paddle.v2.framework.core
as
core
from
op_test
import
OpTest
,
create_op
,
set_input
gpu_list
=
"0,1,2,3"
g_scope
=
core
.
Scope
()
g_ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
if
not
core
.
is_compile_gpu
()
or
not
gpu_list
:
exit
(
0
)
class
TestNCCLReduce
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"ncclReduce"
self
.
gpus
=
[
int
(
g
)
for
g
in
gpu_list
.
split
(
","
)]
self
.
scope
=
g_scope
.
var
(
"Communicator"
).
get_communicator
()
self
.
outputs
=
{
"Communicator"
:
self
.
scope
.
var
(
"Communicator"
)}
def
test_check_output
(
self
):
self
.
check_output
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录