Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
24cf2fcd
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
24cf2fcd
编写于
12月 29, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move cos_sim_functor to math
上级
4a11fdb4
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
290 addition
and
214 deletion
+290
-214
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+3
-1
paddle/operators/cos_sim_op.cc
paddle/operators/cos_sim_op.cc
+0
-22
paddle/operators/cos_sim_op.cu
paddle/operators/cos_sim_op.cu
+0
-45
paddle/operators/cos_sim_op.h
paddle/operators/cos_sim_op.h
+7
-146
paddle/operators/math/CMakeLists.txt
paddle/operators/math/CMakeLists.txt
+2
-0
paddle/operators/math/cos_sim_functor.cc
paddle/operators/math/cos_sim_functor.cc
+48
-0
paddle/operators/math/cos_sim_functor.cu
paddle/operators/math/cos_sim_functor.cu
+64
-0
paddle/operators/math/cos_sim_functor.h
paddle/operators/math/cos_sim_functor.h
+166
-0
未找到文件。
paddle/operators/CMakeLists.txt
浏览文件 @
24cf2fcd
...
...
@@ -210,7 +210,8 @@ set(DEPS_OPS
save_op
load_op
send_op
recv_op
)
recv_op
cos_sim_op
)
if
(
WITH_DISTRIBUTE
)
add_subdirectory
(
detail
)
...
...
@@ -256,6 +257,7 @@ op_library(lstm_op DEPS sequence2batch lstm_compute)
op_library
(
conv_transpose_op DEPS vol2col
)
op_library
(
gru_op DEPS sequence2batch gru_compute
)
op_library
(
recurrent_op SRCS recurrent_op.cc DEPS executor
)
op_library
(
cos_sim_op DEPS cos_sim_functor
)
# FIXME(typhoonzero): save/load depends lodtensor serialization functions
op_library
(
save_op DEPS lod_tensor
)
...
...
paddle/operators/cos_sim_op.cc
浏览文件 @
24cf2fcd
...
...
@@ -149,28 +149,6 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
}
};
template
<
typename
T
>
struct
CosSimDyFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
inline
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
const
size_t
rows
,
const
size_t
cols
,
T
*
dy
)
const
{
for
(
size_t
row_id
=
0
;
row_id
<
rows
;
++
row_id
)
{
auto
xy_norm_prod
=
x_norm
[
row_id
]
*
y_norm
[
0
];
auto
dz_data
=
dz
[
row_id
];
auto
z_data
=
z
[
row_id
];
auto
*
x_data
=
x
+
cols
*
row_id
;
auto
reciprocal_xy_norm_prod
=
1
/
xy_norm_prod
;
auto
y_norm_square
=
y_norm
[
0
]
*
y_norm
[
0
];
auto
reciprocal_y_norm_square
=
1
/
y_norm_square
;
for
(
size_t
i
=
0
;
i
<
cols
;
++
i
)
{
dy
[
i
]
+=
dz_data
*
(
x_data
[
i
]
*
reciprocal_xy_norm_prod
-
z_data
*
y
[
i
]
*
reciprocal_y_norm_square
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
...
...
paddle/operators/cos_sim_op.cu
浏览文件 @
24cf2fcd
...
...
@@ -14,51 +14,6 @@ limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/cos_sim_op.h"
#include "paddle/platform/cuda_helper.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__global__
void
CosSimDyKernel
(
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
const
size_t
rows
,
const
size_t
cols
,
T
*
dy
)
{
int
grid_size
=
blockDim
.
x
*
gridDim
.
x
;
T
y_norm_data
=
y_norm
[
0
];
for
(
int
row_id
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
row_id
<
rows
;
row_id
+=
grid_size
)
{
T
xy_norm_prod
=
x_norm
[
row_id
]
*
y_norm_data
;
T
dz_data
=
dz
[
row_id
];
T
z_data
=
z
[
row_id
];
const
T
*
x_data
=
x
+
cols
*
row_id
;
T
reciprocal_xy_norm_prod
=
1
/
xy_norm_prod
;
T
y_norm_square
=
y_norm_data
*
y_norm_data
;
T
reciprocal_y_norm_square
=
1
/
y_norm_square
;
for
(
size_t
i
=
0
;
i
<
cols
;
++
i
)
{
T
dy_data
=
dz_data
*
(
x_data
[
i
]
*
reciprocal_xy_norm_prod
-
z_data
*
y
[
i
]
*
reciprocal_y_norm_square
);
platform
::
CudaAtomicAdd
(
dy
+
i
,
dy_data
);
}
}
}
template
<
typename
T
>
struct
CosSimDyFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
inline
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
const
size_t
rows
,
const
size_t
cols
,
T
*
dy
)
const
{
const
int
block_size
=
512
;
dim3
threads
(
block_size
,
1
);
dim3
grid
(
1
,
(
rows
+
block_size
-
1
)
/
block_size
);
CosSimDyKernel
<
T
><<<
grid
,
threads
,
0
,
ctx
.
stream
()
>>>
(
x_norm
,
y_norm
,
x
,
y
,
z
,
dz
,
rows
,
cols
,
dy
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
...
...
paddle/operators/cos_sim_op.h
浏览文件 @
24cf2fcd
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/cos_sim_functor.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/for_range.h"
...
...
@@ -22,59 +23,6 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
bool
same_row
>
struct
CosSimFunctor
{
CosSimFunctor
(
const
T
*
x
,
const
T
*
y
,
T
*
x_norm
,
T
*
y_norm
,
T
*
z
,
int
cols
)
:
x_norm_
(
x_norm
),
y_norm_
(
y_norm
),
x_
(
x
),
y_
(
y
),
z_
(
z
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
inline
HOSTDEVICE
void
operator
()(
size_t
row_id
)
const
{
auto
*
x
=
x_
+
cols_
*
row_id
;
T
xx
=
0
,
xy
=
0
,
yy
=
0
;
if
(
same_row
)
{
auto
*
y
=
y_
+
cols_
*
row_id
;
T
tep_x
,
tep_y
;
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
tep_x
=
x
[
i
];
tep_y
=
y
[
i
];
xx
+=
tep_x
*
tep_x
;
yy
+=
tep_y
*
tep_y
;
xy
+=
tep_x
*
tep_y
;
}
xx
=
sqrt
(
xx
);
yy
=
sqrt
(
yy
);
y_norm_
[
row_id
]
=
yy
;
x_norm_
[
row_id
]
=
xx
;
z_
[
row_id
]
=
xy
/
(
xx
*
yy
);
}
else
{
// This can be wrote in a better way.
T
tep_x
,
tep_y
;
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
tep_x
=
x
[
i
];
tep_y
=
y_
[
i
];
xx
+=
tep_x
*
tep_x
;
yy
+=
tep_y
*
tep_y
;
xy
+=
tep_x
*
tep_y
;
}
xx
=
sqrt
(
xx
);
yy
=
sqrt
(
yy
);
if
(
row_id
==
0
)
y_norm_
[
0
]
=
yy
;
x_norm_
[
row_id
]
=
xx
;
z_
[
row_id
]
=
xy
/
(
xx
*
yy
);
}
}
T
*
x_norm_
;
T
*
y_norm_
;
const
T
*
x_
;
const
T
*
y_
;
T
*
z_
;
const
size_t
cols_
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
CosSimKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -95,14 +43,14 @@ class CosSimKernel : public framework::OpKernel<T> {
int
cols
=
framework
::
product
(
in_x
->
dims
())
/
rows_x
;
if
(
rows_x
==
rows_y
)
{
CosSimFunctor
<
T
,
true
>
functor
(
math
::
CosSimFunctor
<
T
,
true
>
functor
(
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
out_x_norm
->
data
<
T
>
(),
out_y_norm
->
data
<
T
>
(),
out_z
->
data
<
T
>
(),
cols
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
static_cast
<
const
DeviceContext
&>
(
context
.
device_context
()),
rows_x
);
for_range
(
functor
);
}
else
{
CosSimFunctor
<
T
,
false
>
functor
(
math
::
CosSimFunctor
<
T
,
false
>
functor
(
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
out_x_norm
->
data
<
T
>
(),
out_y_norm
->
data
<
T
>
(),
out_z
->
data
<
T
>
(),
cols
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
...
...
@@ -112,93 +60,6 @@ class CosSimKernel : public framework::OpKernel<T> {
}
};
template
<
typename
T
>
struct
CosSimGradFunctor
{
CosSimGradFunctor
(
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
T
*
dx
,
int
cols
)
:
x_norm_
(
x_norm
),
y_norm_
(
y_norm
),
x_
(
x
),
y_
(
y
),
z_
(
z
),
dz_
(
dz
),
dx_
(
dx
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
inline
HOSTDEVICE
void
operator
()(
size_t
row_id
)
const
{
auto
x_norm_square
=
x_norm_
[
row_id
]
*
x_norm_
[
row_id
];
auto
xy_norm_prod
=
x_norm_
[
row_id
]
*
y_norm_
[
row_id
];
auto
dz
=
dz_
[
row_id
];
auto
z
=
z_
[
row_id
];
auto
*
dx
=
dx_
+
cols_
*
row_id
;
auto
*
x
=
x_
+
cols_
*
row_id
;
auto
*
y
=
y_
+
cols_
*
row_id
;
auto
reciprocal_xy_norm_prod
=
1
/
xy_norm_prod
;
auto
reciprocal_x_norm_square
=
1
/
x_norm_square
;
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
dx
[
i
]
=
dz
*
(
y
[
i
]
*
reciprocal_xy_norm_prod
-
z
*
x
[
i
]
*
reciprocal_x_norm_square
);
}
}
const
T
*
x_norm_
;
const
T
*
y_norm_
;
const
T
*
x_
;
const
T
*
y_
;
const
T
*
z_
;
const
T
*
dz_
;
T
*
dx_
;
const
size_t
cols_
;
};
template
<
typename
T
>
struct
CosSimDxFunctor
{
CosSimDxFunctor
(
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
T
*
dx
,
int
cols
)
:
x_norm_
(
x_norm
),
y_norm_
(
y_norm
),
x_
(
x
),
y_
(
y
),
z_
(
z
),
dz_
(
dz
),
dx_
(
dx
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
inline
HOSTDEVICE
void
operator
()(
size_t
row_id
)
const
{
auto
xy_norm_prod
=
x_norm_
[
row_id
]
*
y_norm_
[
0
];
auto
dz
=
dz_
[
row_id
];
auto
z
=
z_
[
row_id
];
auto
*
x
=
x_
+
cols_
*
row_id
;
auto
reciprocal_xy_norm_prod
=
1
/
xy_norm_prod
;
auto
x_norm_square
=
x_norm_
[
row_id
]
*
x_norm_
[
row_id
];
auto
*
dx
=
dx_
+
cols_
*
row_id
;
auto
reciprocal_x_norm_square
=
1
/
x_norm_square
;
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
dx
[
i
]
=
dz
*
(
y_
[
i
]
*
reciprocal_xy_norm_prod
-
z
*
x
[
i
]
*
reciprocal_x_norm_square
);
}
}
const
T
*
x_norm_
;
const
T
*
y_norm_
;
const
T
*
x_
;
const
T
*
y_
;
const
T
*
z_
;
const
T
*
dz_
;
T
*
dx_
;
const
size_t
cols_
;
};
template
<
typename
DeviceContext
,
typename
T
>
struct
CosSimDyFunctor
{
inline
void
operator
()(
const
DeviceContext
&
ctx
,
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
const
size_t
rows
,
const
size_t
cols
,
T
*
dy
)
const
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
CosSimGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -220,7 +81,7 @@ class CosSimGradKernel : public framework::OpKernel<T> {
if
(
rows_x
==
rows_y
)
{
if
(
out_grad_x
)
{
CosSimGradFunctor
<
T
>
functor
(
math
::
CosSimGradFunctor
<
T
>
functor
(
in_x_norm
->
data
<
T
>
(),
in_y_norm
->
data
<
T
>
(),
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
in_z
->
data
<
T
>
(),
in_grad_z
->
data
<
T
>
(),
out_grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
cols
);
...
...
@@ -230,7 +91,7 @@ class CosSimGradKernel : public framework::OpKernel<T> {
for_range
(
functor
);
}
if
(
out_grad_y
)
{
CosSimGradFunctor
<
T
>
functor
(
math
::
CosSimGradFunctor
<
T
>
functor
(
in_y_norm
->
data
<
T
>
(),
in_x_norm
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
in_x
->
data
<
T
>
(),
in_z
->
data
<
T
>
(),
in_grad_z
->
data
<
T
>
(),
out_grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
cols
);
...
...
@@ -241,7 +102,7 @@ class CosSimGradKernel : public framework::OpKernel<T> {
}
}
else
{
if
(
out_grad_x
)
{
CosSimDxFunctor
<
T
>
functor
(
math
::
CosSimDxFunctor
<
T
>
functor
(
in_x_norm
->
data
<
T
>
(),
in_y_norm
->
data
<
T
>
(),
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
in_z
->
data
<
T
>
(),
in_grad_z
->
data
<
T
>
(),
out_grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
cols
);
...
...
@@ -256,7 +117,7 @@ class CosSimGradKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
set_zero
(
dev_ctx
,
out_grad_y
,
static_cast
<
T
>
(
0
));
CosSimDyFunctor
<
DeviceContext
,
T
>
functor
;
math
::
CosSimDyFunctor
<
DeviceContext
,
T
>
functor
;
functor
(
dev_ctx
,
in_x_norm
->
data
<
T
>
(),
in_y_norm
->
data
<
T
>
(),
in_x
->
data
<
T
>
(),
in_y
->
data
<
T
>
(),
in_z
->
data
<
T
>
(),
in_grad_z
->
data
<
T
>
(),
static_cast
<
size_t
>
(
rows_x
),
...
...
paddle/operators/math/CMakeLists.txt
浏览文件 @
24cf2fcd
...
...
@@ -16,6 +16,7 @@ if(WITH_GPU)
nv_library
(
maxouting SRCS maxouting.cc maxouting.cu DEPS device_context
)
nv_library
(
unpooling SRCS unpooling.cc unpooling.cu DEPS device_context
)
nv_library
(
gru_compute SRCS gru_compute.cc gru_compute.cu DEPS device_context activation_functions math_function
)
nv_library
(
cos_sim_functor SRCS cos_sim_functor.cc cos_sim_functor.cu DEPS device_context
)
else
()
cc_library
(
math_function SRCS math_function.cc im2col.cc DEPS cblas device_context framework_proto
)
cc_library
(
selected_rows_functor SRCS selected_rows_functor.cc DEPS selected_rows math_function
)
...
...
@@ -30,6 +31,7 @@ else()
cc_library
(
maxouting SRCS maxouting.cc DEPS device_context
)
cc_library
(
unpooling SRCS unpooling.cc DEPS device_context
)
cc_library
(
gru_compute SRCS gru_compute.cc DEPS device_context activation_functions math_function
)
cc_library
(
cos_sim_functor SRCS cos_sim_functor.cc DEPS device_context
)
endif
()
cc_test
(
math_function_test SRCS math_function_test.cc DEPS math_function tensor
)
...
...
paddle/operators/math/cos_sim_functor.cc
0 → 100644
浏览文件 @
24cf2fcd
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/cos_sim_functor.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
T
>
struct
CosSimDyFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
const
size_t
rows
,
const
size_t
cols
,
T
*
dy
)
const
{
for
(
size_t
row_id
=
0
;
row_id
<
rows
;
++
row_id
)
{
auto
xy_norm_prod
=
x_norm
[
row_id
]
*
y_norm
[
0
];
auto
dz_data
=
dz
[
row_id
];
auto
z_data
=
z
[
row_id
];
auto
*
x_data
=
x
+
cols
*
row_id
;
auto
reciprocal_xy_norm_prod
=
1
/
xy_norm_prod
;
auto
y_norm_square
=
y_norm
[
0
]
*
y_norm
[
0
];
auto
reciprocal_y_norm_square
=
1
/
y_norm_square
;
for
(
size_t
i
=
0
;
i
<
cols
;
++
i
)
{
dy
[
i
]
+=
dz_data
*
(
x_data
[
i
]
*
reciprocal_xy_norm_prod
-
z_data
*
y
[
i
]
*
reciprocal_y_norm_square
);
}
}
}
};
template
class
CosSimDyFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
class
CosSimDyFunctor
<
platform
::
CPUDeviceContext
,
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/cos_sim_functor.cu
0 → 100644
浏览文件 @
24cf2fcd
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/cos_sim_functor.h"
#include "paddle/platform/cuda_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
T
>
__global__
void
CosSimDyKernel
(
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
const
size_t
rows
,
const
size_t
cols
,
T
*
dy
)
{
int
grid_size
=
blockDim
.
x
*
gridDim
.
x
;
T
y_norm_data
=
y_norm
[
0
];
for
(
int
row_id
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
row_id
<
rows
;
row_id
+=
grid_size
)
{
T
xy_norm_prod
=
x_norm
[
row_id
]
*
y_norm_data
;
T
dz_data
=
dz
[
row_id
];
T
z_data
=
z
[
row_id
];
const
T
*
x_data
=
x
+
cols
*
row_id
;
T
reciprocal_xy_norm_prod
=
1
/
xy_norm_prod
;
T
y_norm_square
=
y_norm_data
*
y_norm_data
;
T
reciprocal_y_norm_square
=
1
/
y_norm_square
;
for
(
size_t
i
=
0
;
i
<
cols
;
++
i
)
{
T
dy_data
=
dz_data
*
(
x_data
[
i
]
*
reciprocal_xy_norm_prod
-
z_data
*
y
[
i
]
*
reciprocal_y_norm_square
);
platform
::
CudaAtomicAdd
(
dy
+
i
,
dy_data
);
}
}
}
template
<
typename
T
>
struct
CosSimDyFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
const
size_t
rows
,
const
size_t
cols
,
T
*
dy
)
const
{
const
int
block_size
=
512
;
dim3
threads
(
block_size
,
1
);
dim3
grid
(
1
,
(
rows
+
block_size
-
1
)
/
block_size
);
CosSimDyKernel
<
T
><<<
grid
,
threads
,
0
,
ctx
.
stream
()
>>>
(
x_norm
,
y_norm
,
x
,
y
,
z
,
dz
,
rows
,
cols
,
dy
);
}
};
template
class
CosSimDyFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
CosSimDyFunctor
<
platform
::
CUDADeviceContext
,
double
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/cos_sim_functor.h
0 → 100644
浏览文件 @
24cf2fcd
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <math.h>
#include <stdlib.h>
#include "paddle/platform/device_context.h"
#include "paddle/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
T
,
bool
same_row
>
struct
CosSimFunctor
{
CosSimFunctor
(
const
T
*
x
,
const
T
*
y
,
T
*
x_norm
,
T
*
y_norm
,
T
*
z
,
int
cols
)
:
x_norm_
(
x_norm
),
y_norm_
(
y_norm
),
x_
(
x
),
y_
(
y
),
z_
(
z
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
inline
HOSTDEVICE
void
operator
()(
size_t
row_id
)
const
{
auto
*
x
=
x_
+
cols_
*
row_id
;
T
xx
=
0
,
xy
=
0
,
yy
=
0
;
if
(
same_row
)
{
auto
*
y
=
y_
+
cols_
*
row_id
;
T
tep_x
,
tep_y
;
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
tep_x
=
x
[
i
];
tep_y
=
y
[
i
];
xx
+=
tep_x
*
tep_x
;
yy
+=
tep_y
*
tep_y
;
xy
+=
tep_x
*
tep_y
;
}
xx
=
sqrt
(
xx
);
yy
=
sqrt
(
yy
);
y_norm_
[
row_id
]
=
yy
;
x_norm_
[
row_id
]
=
xx
;
z_
[
row_id
]
=
xy
/
(
xx
*
yy
);
}
else
{
// This can be wrote in a better way.
T
tep_x
,
tep_y
;
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
tep_x
=
x
[
i
];
tep_y
=
y_
[
i
];
xx
+=
tep_x
*
tep_x
;
yy
+=
tep_y
*
tep_y
;
xy
+=
tep_x
*
tep_y
;
}
xx
=
sqrt
(
xx
);
yy
=
sqrt
(
yy
);
if
(
row_id
==
0
)
y_norm_
[
0
]
=
yy
;
x_norm_
[
row_id
]
=
xx
;
z_
[
row_id
]
=
xy
/
(
xx
*
yy
);
}
}
T
*
x_norm_
;
T
*
y_norm_
;
const
T
*
x_
;
const
T
*
y_
;
T
*
z_
;
const
size_t
cols_
;
};
template
<
typename
T
>
struct
CosSimGradFunctor
{
CosSimGradFunctor
(
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
T
*
dx
,
int
cols
)
:
x_norm_
(
x_norm
),
y_norm_
(
y_norm
),
x_
(
x
),
y_
(
y
),
z_
(
z
),
dz_
(
dz
),
dx_
(
dx
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
inline
HOSTDEVICE
void
operator
()(
size_t
row_id
)
const
{
auto
x_norm_square
=
x_norm_
[
row_id
]
*
x_norm_
[
row_id
];
auto
xy_norm_prod
=
x_norm_
[
row_id
]
*
y_norm_
[
row_id
];
auto
dz
=
dz_
[
row_id
];
auto
z
=
z_
[
row_id
];
auto
*
dx
=
dx_
+
cols_
*
row_id
;
auto
*
x
=
x_
+
cols_
*
row_id
;
auto
*
y
=
y_
+
cols_
*
row_id
;
auto
reciprocal_xy_norm_prod
=
1
/
xy_norm_prod
;
auto
reciprocal_x_norm_square
=
1
/
x_norm_square
;
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
dx
[
i
]
=
dz
*
(
y
[
i
]
*
reciprocal_xy_norm_prod
-
z
*
x
[
i
]
*
reciprocal_x_norm_square
);
}
}
const
T
*
x_norm_
;
const
T
*
y_norm_
;
const
T
*
x_
;
const
T
*
y_
;
const
T
*
z_
;
const
T
*
dz_
;
T
*
dx_
;
const
size_t
cols_
;
};
template
<
typename
T
>
struct
CosSimDxFunctor
{
CosSimDxFunctor
(
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
T
*
dx
,
int
cols
)
:
x_norm_
(
x_norm
),
y_norm_
(
y_norm
),
x_
(
x
),
y_
(
y
),
z_
(
z
),
dz_
(
dz
),
dx_
(
dx
),
cols_
(
static_cast
<
size_t
>
(
cols
))
{}
inline
HOSTDEVICE
void
operator
()(
size_t
row_id
)
const
{
auto
xy_norm_prod
=
x_norm_
[
row_id
]
*
y_norm_
[
0
];
auto
dz
=
dz_
[
row_id
];
auto
z
=
z_
[
row_id
];
auto
*
x
=
x_
+
cols_
*
row_id
;
auto
reciprocal_xy_norm_prod
=
1
/
xy_norm_prod
;
auto
x_norm_square
=
x_norm_
[
row_id
]
*
x_norm_
[
row_id
];
auto
*
dx
=
dx_
+
cols_
*
row_id
;
auto
reciprocal_x_norm_square
=
1
/
x_norm_square
;
for
(
size_t
i
=
0
;
i
<
cols_
;
++
i
)
{
dx
[
i
]
=
dz
*
(
y_
[
i
]
*
reciprocal_xy_norm_prod
-
z
*
x
[
i
]
*
reciprocal_x_norm_square
);
}
}
const
T
*
x_norm_
;
const
T
*
y_norm_
;
const
T
*
x_
;
const
T
*
y_
;
const
T
*
z_
;
const
T
*
dz_
;
T
*
dx_
;
const
size_t
cols_
;
};
template
<
typename
DeviceContext
,
typename
T
>
struct
CosSimDyFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
T
*
x_norm
,
const
T
*
y_norm
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
const
T
*
dz
,
const
size_t
rows
,
const
size_t
cols
,
T
*
dy
)
const
;
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录