Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
22956530
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
22956530
编写于
12月 29, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish PyLayers
test=develop
上级
0f6ef8ed
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
67 addition
and
124 deletion
+67
-124
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+1
-13
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+19
-19
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+44
-88
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+1
-1
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+2
-3
未找到文件。
python/paddle/fluid/imperative/layers.py
浏览文件 @
22956530
...
@@ -24,19 +24,7 @@ __all__ = ['PyLayer']
...
@@ -24,19 +24,7 @@ __all__ = ['PyLayer']
class
PyLayer
(
core
.
Layer
):
class
PyLayer
(
core
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
name
=
None
):
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
param_attr
=
None
,
bias_attr
=
None
,
name
=
None
):
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
dtype
=
dtype
,
name
=
name
)
self
.
_once_built
=
False
self
.
_once_built
=
False
self
.
_dtype
=
dtype
self
.
_dtype
=
dtype
...
...
python/paddle/fluid/imperative/nn.py
浏览文件 @
22956530
...
@@ -46,8 +46,15 @@ class Conv2D(layers.PyLayer):
...
@@ -46,8 +46,15 @@ class Conv2D(layers.PyLayer):
name
=
None
,
name
=
None
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
assert
param_attr
is
not
False
,
"param_attr should not be False here."
assert
param_attr
is
not
False
,
"param_attr should not be False here."
super
(
Conv2D
,
self
).
__init__
(
super
(
Conv2D
,
self
).
__init__
(
name
=
name
,
dtype
=
dtype
)
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
name
=
name
,
dtype
=
dtype
)
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
dtype
=
dtype
,
name
=
name
)
self
.
_groups
=
groups
self
.
_groups
=
groups
self
.
_stride
=
utils
.
convert_to_list
(
stride
,
2
,
'stride'
)
self
.
_stride
=
utils
.
convert_to_list
(
stride
,
2
,
'stride'
)
...
@@ -163,6 +170,9 @@ class Pool2D(layers.PyLayer):
...
@@ -163,6 +170,9 @@ class Pool2D(layers.PyLayer):
super
(
Pool2D
,
self
).
__init__
(
name
=
name
,
dtype
=
dtype
)
super
(
Pool2D
,
self
).
__init__
(
name
=
name
,
dtype
=
dtype
)
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
dtype
=
dtype
,
name
=
name
)
self
.
_pool_type
=
pool_type
self
.
_pool_type
=
pool_type
self
.
_pool_size
=
utils
.
convert_to_list
(
pool_size
,
2
,
'pool_size'
)
self
.
_pool_size
=
utils
.
convert_to_list
(
pool_size
,
2
,
'pool_size'
)
self
.
_pool_padding
=
utils
.
convert_to_list
(
pool_padding
,
2
,
self
.
_pool_padding
=
utils
.
convert_to_list
(
pool_padding
,
2
,
...
@@ -197,32 +207,22 @@ class Pool2D(layers.PyLayer):
...
@@ -197,32 +207,22 @@ class Pool2D(layers.PyLayer):
class
FC
(
layers
.
PyLayer
):
class
FC
(
layers
.
PyLayer
):
def
__init__
(
self
,
def
__init__
(
self
,
size_in
,
size
,
size_out
,
num_flatten_dims
=
1
,
param_attr
=
None
,
param_attr
=
None
,
num_flatten_dims
=
1
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
super
(
FC
,
self
).
__init__
(
param_attr
=
param_attr
,
dtype
=
dtype
)
super
(
FC
,
self
).
__init__
()
self
.
_size
=
size
self
.
_size_in
=
size_in
self
.
_size_out
=
size_out
self
.
_num_flatten_dims
=
num_flatten_dims
self
.
_num_flatten_dims
=
num_flatten_dims
self
.
_dtype
=
dtype
self
.
_dtype
=
dtype
if
self
.
_size_in
!=
-
1
:
from
..layer_helper
import
LayerHelper
self
.
_w
=
self
.
_helper
.
create_parameter
(
self
.
_helper
=
LayerHelper
(
'FC'
,
param_attr
=
param_attr
)
attr
=
self
.
_helper
.
param_attr
,
shape
=
[
size_in
,
size_out
],
dtype
=
self
.
_dtype
,
is_bias
=
False
)
def
_build_once
(
self
,
input
):
def
_build_once
(
self
,
input
):
if
self
.
_size_in
!=
-
1
:
return
input_shape
=
input
.
shape
input_shape
=
input
.
shape
param_shape
=
[
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
self
.
_num_flatten_dims
:],
1
)
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
self
.
_num_flatten_dims
:],
1
)
]
+
[
self
.
_size
_out
]
]
+
[
self
.
_size
]
self
.
_w
=
self
.
_helper
.
create_parameter
(
self
.
_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
param_attr
,
attr
=
self
.
_helper
.
param_attr
,
shape
=
param_shape
,
shape
=
param_shape
,
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
22956530
...
@@ -502,22 +502,22 @@ def lstm(input,
...
@@ -502,22 +502,22 @@ def lstm(input,
If Device is GPU, This op will use cudnn LSTM implementation
If Device is GPU, This op will use cudnn LSTM implementation
A four-gate Long Short-Term Memory network with no peephole connections.
A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
.. math::
.. math::
i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)
i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)
f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)
f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)
o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)
o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)
\\
tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
\\
tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
c_t &= f_t \odot c_{t-1} + i_t \odot
\\
tilde{c_t}
c_t &= f_t \odot c_{t-1} + i_t \odot
\\
tilde{c_t}
h_t &= o_t \odot tanh(c_t)
h_t &= o_t \odot tanh(c_t)
- $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
- $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
of weights from the input gate to the input)
of weights from the input gate to the input)
...
@@ -531,19 +531,19 @@ def lstm(input,
...
@@ -531,19 +531,19 @@ def lstm(input,
- :math:`
\\
tilde{c_t}` is also called candidate hidden state,
- :math:`
\\
tilde{c_t}` is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
which is computed based on the current input and the previous hidden state.
Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
X represensts a matrix multiplication
X represensts a matrix multiplication
Args:
Args:
input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
init_h(Variable): The initial hidden state of the LSTM
init_h(Variable): The initial hidden state of the LSTM
This is a tensor with shape ( num_layers x batch_size x hidden_size)
This is a tensor with shape ( num_layers x batch_size x hidden_size)
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
init_c(Variable): The initial cell state of the LSTM.
init_c(Variable): The initial cell state of the LSTM.
This is a tensor with shape ( num_layers x batch_size x hidden_size )
This is a tensor with shape ( num_layers x batch_size x hidden_size )
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
hidden_size (int): hidden size of the LSTM
hidden_size (int): hidden size of the LSTM
num_layers (int): total layers number of the LSTM
num_layers (int): total layers number of the LSTM
dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
...
@@ -558,18 +558,18 @@ def lstm(input,
...
@@ -558,18 +558,18 @@ def lstm(input,
Returns:
Returns:
rnn_out(Tensor),last_h(Tensor),last_c(Tensor):
rnn_out(Tensor),last_h(Tensor),last_c(Tensor):
Three tensors, rnn_out, last_h, last_c:
Three tensors, rnn_out, last_h, last_c:
- rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
\
- rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
\
if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
- last_h is the hidden state of the last step of LSTM
\
- last_h is the hidden state of the last step of LSTM
\
shape is ( num_layers x batch_size x hidden_size )
\
shape is ( num_layers x batch_size x hidden_size )
\
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
- last_c(Tensor): the cell state of the last step of LSTM
\
- last_c(Tensor): the cell state of the last step of LSTM
\
shape is ( num_layers x batch_size x hidden_size )
\
shape is ( num_layers x batch_size x hidden_size )
\
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
Examples:
Examples:
...
@@ -1255,7 +1255,7 @@ def dropout(x,
...
@@ -1255,7 +1255,7 @@ def dropout(x,
(mask is a tensor same shape with input, value is 0 or 1
(mask is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob)
ratio of 0 is dropout_prob)
Returns:
Returns:
Variable: A tensor variable is the shape with `x`.
Variable: A tensor variable is the shape with `x`.
...
@@ -1346,10 +1346,10 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
...
@@ -1346,10 +1346,10 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
ValueError:
ValueError:
1. the 1st dimension of ``input`` and ``label`` are not equal.
1. the 1st dimension of ``input`` and ``label`` are not equal.
2. when ``soft_label == True``, and the 2nd dimension of
2. when ``soft_label == True``, and the 2nd dimension of
``input`` and ``label`` are not equal.
``input`` and ``label`` are not equal.
3. when ``soft_label == False``, and the 2nd dimension of
3. when ``soft_label == False``, and the 2nd dimension of
``label`` is not 1.
``label`` is not 1.
...
@@ -1471,7 +1471,7 @@ def chunk_eval(input,
...
@@ -1471,7 +1471,7 @@ def chunk_eval(input,
This function computes and outputs the precision, recall and
This function computes and outputs the precision, recall and
F1-score of chunk detection.
F1-score of chunk detection.
For some basics of chunking, please refer to
For some basics of chunking, please refer to
`Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
`Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
...
@@ -2306,7 +2306,7 @@ def sequence_slice(input, offset, length, name=None):
...
@@ -2306,7 +2306,7 @@ def sequence_slice(input, offset, length, name=None):
out.lod = [[2, 1]],
out.lod = [[2, 1]],
out.dims = (3, 2).
out.dims = (3, 2).
Note:
Note:
The first dimension size of **input**, **offset** and **length**
The first dimension size of **input**, **offset** and **length**
should be equal. The **offset** should start from 0.
should be equal. The **offset** should start from 0.
...
@@ -4678,7 +4678,7 @@ def ctc_greedy_decoder(input, blank, name=None):
...
@@ -4678,7 +4678,7 @@ def ctc_greedy_decoder(input, blank, name=None):
[0.5, 0.1, 0.3, 0.1]]
[0.5, 0.1, 0.3, 0.1]]
input.lod = [[4, 4]]
input.lod = [[4, 4]]
Computation:
Computation:
step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
...
@@ -4712,7 +4712,7 @@ def ctc_greedy_decoder(input, blank, name=None):
...
@@ -4712,7 +4712,7 @@ def ctc_greedy_decoder(input, blank, name=None):
Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
\
Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
\
'Lp' is the sum if all output sequences' length. If all the sequences
\
'Lp' is the sum if all output sequences' length. If all the sequences
\
in result were empty, the result LoDTensor will be [-1] with
\
in result were empty, the result LoDTensor will be [-1] with
\
LoD [[]] and dims [1, 1].
LoD [[]] and dims [1, 1].
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -5065,7 +5065,7 @@ def hsigmoid(input,
...
@@ -5065,7 +5065,7 @@ def hsigmoid(input,
"""
"""
The hierarchical sigmoid operator is used to accelerate the training
The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a
process of language model. This operator organizes the classes into a
complete binary tree, or you can use is_custom to pass your own tree to
complete binary tree, or you can use is_custom to pass your own tree to
implement hierarchical. Each leaf node represents a class(a word) and each
implement hierarchical. Each leaf node represents a class(a word) and each
internal node acts as a binary classifier. For each word there's a unique
internal node acts as a binary classifier. For each word there's a unique
path from root to it's leaf node, hsigmoid calculate the cost for each
path from root to it's leaf node, hsigmoid calculate the cost for each
...
@@ -5082,7 +5082,7 @@ def hsigmoid(input,
...
@@ -5082,7 +5082,7 @@ def hsigmoid(input,
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
means label of each binary classification, using 1 indicate true, 0 indicate false.
means label of each binary classification, using 1 indicate true, 0 indicate false.
4. now, each word should has its path and code along the path, you can pass a batch of path and code
4. now, each word should has its path and code along the path, you can pass a batch of path and code
related to the same batch of inputs.
related to the same batch of inputs.
Args:
Args:
...
@@ -5091,8 +5091,8 @@ def hsigmoid(input,
...
@@ -5091,8 +5091,8 @@ def hsigmoid(input,
and :math:`D` is the feature size.
and :math:`D` is the feature size.
label (Variable): The tensor variable contains labels of training data.
label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N
\\
times 1]`.
It's a tensor with shape is :math:`[N
\\
times 1]`.
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
which indicates the num of classes using by binary classify.
which indicates the num of classes using by binary classify.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
...
@@ -5105,15 +5105,15 @@ def hsigmoid(input,
...
@@ -5105,15 +5105,15 @@ def hsigmoid(input,
is not set, the bias is initialized zero. Default: None.
is not set, the bias is initialized zero. Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
will be named automatically. Default: None.
path_table: (Variable|None) this variable can store each batch of samples' path to root,
path_table: (Variable|None) this variable can store each batch of samples' path to root,
it should be in leaf -> root order
it should be in leaf -> root order
path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
structure and each element in this array is indexes in parent nodes' Weight Matrix.
structure and each element in this array is indexes in parent nodes' Weight Matrix.
path_code: (Variable|None) this variable can store each batch of samples' code,
path_code: (Variable|None) this variable can store each batch of samples' code,
each code consist with every code of parent nodes. it should be in leaf -> root order
each code consist with every code of parent nodes. it should be in leaf -> root order
is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
of W and input will be sparse.
of W and input will be sparse.
Returns:
Returns:
...
@@ -6965,10 +6965,10 @@ def mean_iou(input, label, num_classes):
...
@@ -6965,10 +6965,10 @@ def mean_iou(input, label, num_classes):
num_classes (int): The possible number of labels.
num_classes (int): The possible number of labels.
Returns:
Returns:
mean_iou (Variable),out_wrong(Variable),out_correct(Variable):
mean_iou (Variable),out_wrong(Variable),out_correct(Variable):
Three variables:
Three variables:
- mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
- mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
- out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
- out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
- out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
- out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
...
@@ -7166,7 +7166,7 @@ def affine_grid(theta, out_shape, name=None):
...
@@ -7166,7 +7166,7 @@ def affine_grid(theta, out_shape, name=None):
Args:
Args:
theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
``out_shape`` can be a Variable or a list or tuple.
``out_shape`` can be a Variable or a list or tuple.
name(str|None): A name for this layer(optional). If set None, the layer
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
will be named automatically.
...
@@ -7762,9 +7762,9 @@ def flatten(x, axis=1, name=None):
...
@@ -7762,9 +7762,9 @@ def flatten(x, axis=1, name=None):
"""
"""
**Flatten layer**
**Flatten layer**
Flattens the input tensor into a 2D matrix.
Flattens the input tensor into a 2D matrix.
For Example:
For Example:
.. code-block:: text
.. code-block:: text
Case 1:
Case 1:
...
@@ -8942,7 +8942,7 @@ def similarity_focus(input, axis, indexes, name=None):
...
@@ -8942,7 +8942,7 @@ def similarity_focus(input, axis, indexes, name=None):
SimilarityFocus Operator
SimilarityFocus Operator
Generate a similarity focus mask with the same shape of input using the following method:
Generate a similarity focus mask with the same shape of input using the following method:
1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
to the axis according to the indexes. For example, if axis=1 and indexes=[a],
to the axis according to the indexes. For example, if axis=1 and indexes=[a],
it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
...
@@ -9713,47 +9713,3 @@ def huber_loss(input, label, delta):
...
@@ -9713,47 +9713,3 @@ def huber_loss(input, label, delta):
'Residual'
:
residual
},
'Residual'
:
residual
},
attrs
=
{
'delta'
:
delta
})
attrs
=
{
'delta'
:
delta
})
return
out
return
out
class
FC
(
layers
.
PyLayer
):
def
__init__
(
self
,
size
,
param_attr
=
None
,
num_flatten_dims
=
1
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
super
(
FC
,
self
).
__init__
(
param_attr
=
param_attr
)
self
.
_size
=
size
self
.
_num_flatten_dims
=
num_flatten_dims
self
.
_dtype
=
dtype
self
.
_tmp
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
def
_build_once
(
self
,
inputs
):
input_shape
=
inputs
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
self
.
_num_flatten_dims
:],
1
)
]
+
[
self
.
_size
]
self
.
_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
param_attr
,
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
def
forward
(
self
,
inputs
):
self
.
_helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
inputs
,
"Y"
:
self
.
_w
},
outputs
=
{
"Out"
:
self
.
_tmp
},
attrs
=
{
"x_num_col_dims"
:
self
.
_num_flatten_dims
,
"y_num_col_dims"
:
1
})
self
.
_helper
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
[
self
.
_tmp
]},
outputs
=
{
"Out"
:
self
.
_out
},
attrs
=
{
"use_mkldnn"
:
False
})
return
self
.
_out
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
22956530
...
@@ -18,7 +18,7 @@ import numpy as np
...
@@ -18,7 +18,7 @@ import numpy as np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle.fluid.
layers
.nn
import
FC
from
paddle.fluid.
imperative
.nn
import
FC
from
test_imperative_base
import
new_program_scope
from
test_imperative_base
import
new_program_scope
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
22956530
...
@@ -74,7 +74,7 @@ class SimpleImgConvPool(fluid.imperative.PyLayer):
...
@@ -74,7 +74,7 @@ class SimpleImgConvPool(fluid.imperative.PyLayer):
class
MNIST
(
fluid
.
imperative
.
PyLayer
):
class
MNIST
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
,
param_attr
=
None
,
bias_attr
=
None
):
def
__init__
(
self
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
MNIST
,
self
).
__init__
(
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
super
(
MNIST
,
self
).
__init__
()
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
...
@@ -85,8 +85,7 @@ class MNIST(fluid.imperative.PyLayer):
...
@@ -85,8 +85,7 @@ class MNIST(fluid.imperative.PyLayer):
pool_2_shape
=
50
*
8
*
8
pool_2_shape
=
50
*
8
*
8
SIZE
=
10
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
FC
(
-
1
,
self
.
_fc
=
FC
(
10
,
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)))
loc
=
0.0
,
scale
=
scale
)))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录