Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
217c6a36
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
217c6a36
编写于
11月 27, 2017
作者:
R
ranqiu92
提交者:
GitHub
11月 27, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5949 from ranqiu92/doc
Refine the doc of layers.py
上级
0ce9bf77
d4c2f2f2
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
24 addition
and
24 deletion
+24
-24
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+24
-24
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
217c6a36
...
...
@@ -2988,8 +2988,8 @@ def spp_layer(input,
A layer performs spatial pyramid pooling.
Reference:
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
https://arxiv.org/abs/1406.4729
`
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
https://arxiv.org/abs/1406.4729
`_
The example usage is:
...
...
@@ -3090,8 +3090,8 @@ def img_cmrnorm_layer(input,
Response normalization across feature maps.
Reference:
ImageNet Classification with Deep Convolutional Neural Networks
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
`
ImageNet Classification with Deep Convolutional Neural Networks
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
`_
The example usage is:
...
...
@@ -3157,9 +3157,9 @@ def batch_norm_layer(input,
y_i &
\\
gets
\\
gamma
\\
hat{x_i} +
\\
beta
\\
qquad &//\ scale\ and\ shift
Reference:
Batch Normalization: Accelerating Deep Network Training by Reducing
`
Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
`_
The example usage is:
...
...
@@ -5416,10 +5416,10 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
to be devided by groups.
Reference:
Maxout Networks
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
https://arxiv.org/pdf/1312.6082v4.pdf
`
Maxout Networks
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
`_
`
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
https://arxiv.org/pdf/1312.6082v4.pdf
`_
.. math::
y_{si+j} = \max_k x_{gsi + sk + j}
...
...
@@ -5484,9 +5484,9 @@ def ctc_layer(input,
alignment between the inputs and the target labels is unknown.
Reference:
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
`
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
`_
Note:
Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
...
...
@@ -5558,9 +5558,9 @@ def warp_ctc_layer(input,
install it to :code:`third_party/install/warpctc` directory.
Reference:
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
`
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
`_
Note:
- Let num_classes represents the category number. Considering the 'blank'
...
...
@@ -5780,8 +5780,8 @@ def nce_layer(input,
Noise-contrastive estimation.
Reference:
A fast and simple algorithm for training neural probabilistic language
models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
`
A fast and simple algorithm for training neural probabilistic language
models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
`_
The example usage is:
...
...
@@ -5896,8 +5896,8 @@ def rank_cost(left,
A cost Layer for learning to rank using gradient descent.
Reference:
Learning to Rank using Gradient Descent
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
`
Learning to Rank using Gradient Descent
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
`_
.. math::
...
...
@@ -6432,8 +6432,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
smooth_{L1}(x) =
\\
begin{cases} 0.5x^2&
\\
text{if}
\\
|x| < 1
\\\\
|x|-0.5&
\\
text{otherwise} \end{cases}
Reference:
Fast R-CNN
https://arxiv.org/pdf/1504.08083v2.pdf
`
Fast R-CNN
https://arxiv.org/pdf/1504.08083v2.pdf
`_
The example usage is:
...
...
@@ -6639,8 +6639,8 @@ def prelu_layer(input,
The Parametric Relu activation that actives outputs with a learnable weight.
Reference:
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf
`
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf
`_
.. math::
z_i &
\\
quad if
\\
quad z_i > 0
\\\\
...
...
@@ -6736,8 +6736,8 @@ def gated_unit_layer(input,
product between :match:`X'` and :math:`\sigma` is finally returned.
Reference:
Language Modeling with Gated Convolutional Networks
https://arxiv.org/abs/1612.08083
`
Language Modeling with Gated Convolutional Networks
https://arxiv.org/abs/1612.08083
`_
.. math::
y=
\\
text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录