Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
20b40cb0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
20b40cb0
编写于
9月 13, 2018
作者:
L
luotao1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add multi-thread for nlp unit-tests
上级
e69d9c84
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
207 addition
and
235 deletion
+207
-235
paddle/fluid/inference/api/helper.h
paddle/fluid/inference/api/helper.h
+7
-1
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+2
-4
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
+19
-51
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
+18
-55
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
+7
-77
paddle/fluid/inference/tests/api/analyzer_text_classification_tester.cc
...nference/tests/api/analyzer_text_classification_tester.cc
+28
-47
paddle/fluid/inference/tests/api/tester_helper.h
paddle/fluid/inference/tests/api/tester_helper.h
+126
-0
未找到文件。
paddle/fluid/inference/api/helper.h
浏览文件 @
20b40cb0
...
@@ -123,10 +123,16 @@ std::string DescribeTensor(const PaddleTensor &tensor) {
...
@@ -123,10 +123,16 @@ std::string DescribeTensor(const PaddleTensor &tensor) {
}
}
void
PrintTime
(
int
batch_size
,
int
repeat
,
int
num_threads
,
int
tid
,
void
PrintTime
(
int
batch_size
,
int
repeat
,
int
num_threads
,
int
tid
,
double
latency
)
{
double
latency
,
int
epoch
=
1
)
{
LOG
(
INFO
)
<<
"====== batch_size: "
<<
batch_size
<<
", repeat: "
<<
repeat
LOG
(
INFO
)
<<
"====== batch_size: "
<<
batch_size
<<
", repeat: "
<<
repeat
<<
", threads: "
<<
num_threads
<<
", thread id: "
<<
tid
<<
", threads: "
<<
num_threads
<<
", thread id: "
<<
tid
<<
", latency: "
<<
latency
<<
"ms ======"
;
<<
", latency: "
<<
latency
<<
"ms ======"
;
if
(
epoch
>
1
)
{
int
samples
=
batch_size
*
epoch
;
LOG
(
INFO
)
<<
"====== sample number: "
<<
samples
<<
", average latency of each sample: "
<<
latency
/
samples
<<
"ms ======"
;
}
}
}
}
// namespace inference
}
// namespace inference
...
...
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
20b40cb0
...
@@ -49,9 +49,7 @@ set(TEXT_CLASSIFICATION_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/te
...
@@ -49,9 +49,7 @@ set(TEXT_CLASSIFICATION_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/te
set
(
TEXT_CLASSIFICATION_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/text_classification_data.txt.tar.gz"
)
set
(
TEXT_CLASSIFICATION_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/text_classification_data.txt.tar.gz"
)
set
(
TEXT_CLASSIFICATION_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/text_classification"
)
set
(
TEXT_CLASSIFICATION_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/text_classification"
)
download_model_and_data
(
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
${
TEXT_CLASSIFICATION_MODEL_URL
}
${
TEXT_CLASSIFICATION_DATA_URL
}
)
download_model_and_data
(
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
${
TEXT_CLASSIFICATION_MODEL_URL
}
${
TEXT_CLASSIFICATION_DATA_URL
}
)
inference_analysis_test
(
test_text_classification SRCS analyzer_text_classification_tester.cc
inference_analysis_test
(
test_
analyzer_
text_classification SRCS analyzer_text_classification_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor
EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor
ARGS --infer_model=
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
/text-classification-Senta
ARGS --infer_model=
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
/text-classification-Senta
--infer_data=
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
/data.txt
--infer_data=
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
/data.txt
)
--topn=1
# Just run top 1 batch.
)
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
浏览文件 @
20b40cb0
...
@@ -12,21 +12,7 @@
...
@@ -12,21 +12,7 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string
(
infer_model
,
""
,
"model path for LAC"
);
DEFINE_string
(
infer_data
,
""
,
"data file for LAC"
);
DEFINE_int32
(
batch_size
,
1
,
"batch size."
);
DEFINE_int32
(
burning
,
0
,
"Burning before repeat."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
DEFINE_bool
(
test_all_data
,
false
,
"Test the all dataset in data file."
);
namespace
paddle
{
namespace
paddle
{
namespace
inference
{
namespace
inference
{
...
@@ -126,46 +112,37 @@ void TestLACPrediction(const std::string &model_path,
...
@@ -126,46 +112,37 @@ void TestLACPrediction(const std::string &model_path,
const
std
::
string
&
data_file
,
const
int
batch_size
,
const
std
::
string
&
data_file
,
const
int
batch_size
,
const
int
repeat
,
bool
test_all_data
,
const
int
repeat
,
bool
test_all_data
,
bool
use_analysis
=
false
)
{
bool
use_analysis
=
false
)
{
NativeConfig
config
;
AnalysisConfig
cfg
;
config
.
model_dir
=
model_path
;
cfg
.
model_dir
=
model_path
;
config
.
use_gpu
=
false
;
cfg
.
use_gpu
=
false
;
config
.
device
=
0
;
cfg
.
device
=
0
;
config
.
specify_input_name
=
true
;
cfg
.
specify_input_name
=
true
;
cfg
.
enable_ir_optim
=
true
;
std
::
vector
<
PaddleTensor
>
input_slots
,
outputs_slots
;
std
::
vector
<
PaddleTensor
>
input_slots
,
outputs_slots
;
DataRecord
data
(
data_file
,
batch_size
);
DataRecord
data
(
data_file
,
batch_size
);
GetOneBatch
(
&
input_slots
,
&
data
,
batch_size
);
GetOneBatch
(
&
input_slots
,
&
data
,
batch_size
);
std
::
unique_ptr
<
PaddlePredictor
>
predictor
;
std
::
unique_ptr
<
PaddlePredictor
>
predictor
;
if
(
use_analysis
)
{
if
(
use_analysis
)
{
AnalysisConfig
cfg
;
cfg
.
model_dir
=
model_path
;
cfg
.
use_gpu
=
false
;
cfg
.
device
=
0
;
cfg
.
specify_input_name
=
true
;
cfg
.
enable_ir_optim
=
true
;
predictor
=
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
cfg
);
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
cfg
);
}
else
{
}
else
{
predictor
=
predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
c
onfi
g
);
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
c
f
g
);
}
}
for
(
int
i
=
0
;
i
<
FLAGS_burning
;
i
++
)
{
for
(
int
i
=
0
;
i
<
FLAGS_burning
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs_slots
);
predictor
->
Run
(
input_slots
,
&
outputs_slots
);
}
}
Timer
timer
;
Timer
timer
;
if
(
test_all_data
)
{
if
(
FLAGS_test_all_data
)
{
double
sum
=
0
;
LOG
(
INFO
)
<<
"test all data"
;
LOG
(
INFO
)
<<
"Total number of samples: "
<<
data
.
datasets
.
size
();
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
for
(
int
i
=
0
;
i
<
repeat
;
i
++
)
{
for
(
size_t
bid
=
0
;
bid
<
data
.
batched_datas
.
size
();
++
bid
)
{
for
(
size_t
bid
=
0
;
bid
<
data
.
batched_datas
.
size
();
++
bid
)
{
GetOneBatch
(
&
input_slots
,
&
data
,
batch_size
);
GetOneBatch
(
&
input_slots
,
&
data
,
batch_size
);
input_slots_all
.
emplace_back
(
input_slots
);
timer
.
tic
();
predictor
->
Run
(
input_slots
,
&
outputs_slots
);
sum
+=
timer
.
toc
();
}
}
}
PrintTime
(
batch_size
,
repeat
,
1
,
0
,
sum
/
repeat
);
LOG
(
INFO
)
<<
"total number of samples: "
<<
data
.
datasets
.
size
();
LOG
(
INFO
)
<<
"Average latency of each sample: "
TestPrediction
(
cfg
,
input_slots_all
,
&
outputs_slots
,
FLAGS_num_threads
);
<<
sum
/
repeat
/
data
.
datasets
.
size
()
<<
" ms"
;
return
;
return
;
}
}
timer
.
tic
();
timer
.
tic
();
...
@@ -190,19 +167,10 @@ void TestLACPrediction(const std::string &model_path,
...
@@ -190,19 +167,10 @@ void TestLACPrediction(const std::string &model_path,
if
(
use_analysis
)
{
if
(
use_analysis
)
{
// run once for comparion as reference
// run once for comparion as reference
auto
ref_predictor
=
auto
ref_predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
c
onfi
g
);
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
c
f
g
);
std
::
vector
<
PaddleTensor
>
ref_outputs_slots
;
std
::
vector
<
PaddleTensor
>
ref_outputs_slots
;
ref_predictor
->
Run
(
input_slots
,
&
ref_outputs_slots
);
ref_predictor
->
Run
(
input_slots
,
&
ref_outputs_slots
);
EXPECT_EQ
(
ref_outputs_slots
.
size
(),
outputs_slots
.
size
());
CompareResult
(
ref_outputs_slots
,
outputs_slots
);
auto
&
ref_out
=
ref_outputs_slots
[
0
];
size_t
ref_size
=
std
::
accumulate
(
ref_out
.
shape
.
begin
(),
ref_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
EXPECT_EQ
(
size
,
ref_size
);
int64_t
*
pdata_ref
=
static_cast
<
int64_t
*>
(
ref_out
.
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
EXPECT_EQ
(
pdata_ref
[
i
],
pdata
[
i
]);
}
AnalysisPredictor
*
analysis_predictor
=
AnalysisPredictor
*
analysis_predictor
=
dynamic_cast
<
AnalysisPredictor
*>
(
predictor
.
get
());
dynamic_cast
<
AnalysisPredictor
*>
(
predictor
.
get
());
...
...
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
浏览文件 @
20b40cb0
...
@@ -12,20 +12,7 @@
...
@@ -12,20 +12,7 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string
(
infer_model
,
""
,
"model path"
);
DEFINE_string
(
infer_data
,
""
,
"data path"
);
DEFINE_int32
(
batch_size
,
10
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
DEFINE_bool
(
test_all_data
,
false
,
"Test the all dataset in data file."
);
namespace
paddle
{
namespace
paddle
{
namespace
inference
{
namespace
inference
{
...
@@ -113,50 +100,35 @@ const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
...
@@ -113,50 +100,35 @@ const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
48
,
39
,
38
,
16
,
25
};
48
,
39
,
38
,
16
,
25
};
void
TestChineseNERPrediction
(
bool
use_analysis
)
{
void
TestChineseNERPrediction
(
bool
use_analysis
)
{
NativeConfig
config
;
AnalysisConfig
cfg
;
config
.
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
cfg
.
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
config
.
param_file
=
FLAGS_infer_model
+
"/param"
;
cfg
.
param_file
=
FLAGS_infer_model
+
"/param"
;
config
.
use_gpu
=
false
;
cfg
.
use_gpu
=
false
;
config
.
device
=
0
;
cfg
.
device
=
0
;
config
.
specify_input_name
=
true
;
cfg
.
specify_input_name
=
true
;
cfg
.
enable_ir_optim
=
true
;
std
::
vector
<
PaddleTensor
>
input_slots
,
outputs
;
std
::
vector
<
PaddleTensor
>
input_slots
,
outputs
;
std
::
unique_ptr
<
PaddlePredictor
>
predictor
;
std
::
unique_ptr
<
PaddlePredictor
>
predictor
;
Timer
timer
;
Timer
timer
;
if
(
use_analysis
)
{
if
(
use_analysis
)
{
AnalysisConfig
cfg
;
cfg
.
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
cfg
.
param_file
=
FLAGS_infer_model
+
"/param"
;
cfg
.
use_gpu
=
false
;
cfg
.
device
=
0
;
cfg
.
specify_input_name
=
true
;
cfg
.
enable_ir_optim
=
true
;
predictor
=
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
cfg
);
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
cfg
);
}
else
{
}
else
{
predictor
=
predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
c
onfi
g
);
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
c
f
g
);
}
}
if
(
FLAGS_test_all_data
)
{
if
(
FLAGS_test_all_data
)
{
LOG
(
INFO
)
<<
"test all data"
;
LOG
(
INFO
)
<<
"test all data"
;
double
sum
=
0
;
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
size_t
num_samples
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
for
(
int
i
=
0
;
i
<
FLAGS_repeat
;
i
++
)
{
for
(
size_t
bid
=
0
;
bid
<
data
.
num_samples
/
FLAGS_batch_size
;
++
bid
)
{
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
PrepareInputs
(
&
input_slots
,
&
data
,
FLAGS_batch_size
);
// Just one batch, the num_samples remains the same.
input_slots_all
.
emplace_back
(
input_slots
);
num_samples
=
data
.
num_samples
;
for
(
size_t
bid
=
0
;
bid
<
num_samples
/
FLAGS_batch_size
;
++
bid
)
{
PrepareInputs
(
&
input_slots
,
&
data
,
FLAGS_batch_size
);
timer
.
tic
();
predictor
->
Run
(
input_slots
,
&
outputs
);
sum
+=
timer
.
toc
();
}
}
}
LOG
(
INFO
)
<<
"total number of samples: "
<<
num_samples
;
LOG
(
INFO
)
<<
"total number of samples: "
<<
data
.
num_samples
;
PrintTime
(
FLAGS_batch_size
,
FLAGS_repeat
,
1
,
0
,
sum
/
FLAGS_repeat
);
TestPrediction
(
cfg
,
input_slots_all
,
&
outputs
,
FLAGS_num_threads
);
LOG
(
INFO
)
<<
"average latency of each sample: "
<<
sum
/
FLAGS_repeat
/
num_samples
;
return
;
return
;
}
}
// Prepare inputs.
// Prepare inputs.
...
@@ -182,19 +154,10 @@ void TestChineseNERPrediction(bool use_analysis) {
...
@@ -182,19 +154,10 @@ void TestChineseNERPrediction(bool use_analysis) {
if
(
use_analysis
)
{
if
(
use_analysis
)
{
// run once for comparion as reference
// run once for comparion as reference
auto
ref_predictor
=
auto
ref_predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
c
onfi
g
);
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
c
f
g
);
std
::
vector
<
PaddleTensor
>
ref_outputs_slots
;
std
::
vector
<
PaddleTensor
>
ref_outputs_slots
;
ref_predictor
->
Run
(
input_slots
,
&
ref_outputs_slots
);
ref_predictor
->
Run
(
input_slots
,
&
ref_outputs_slots
);
EXPECT_EQ
(
ref_outputs_slots
.
size
(),
outputs
.
size
());
CompareResult
(
ref_outputs_slots
,
outputs
);
auto
&
ref_out
=
ref_outputs_slots
[
0
];
size_t
ref_size
=
std
::
accumulate
(
ref_out
.
shape
.
begin
(),
ref_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
EXPECT_EQ
(
size
,
ref_size
);
int64_t
*
pdata_ref
=
static_cast
<
int64_t
*>
(
ref_out
.
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
EXPECT_EQ
(
pdata_ref
[
i
],
result
[
i
]);
}
AnalysisPredictor
*
analysis_predictor
=
AnalysisPredictor
*
analysis_predictor
=
dynamic_cast
<
AnalysisPredictor
*>
(
predictor
.
get
());
dynamic_cast
<
AnalysisPredictor
*>
(
predictor
.
get
());
...
...
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
浏览文件 @
20b40cb0
...
@@ -12,24 +12,7 @@
...
@@ -12,24 +12,7 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include <thread> // NOLINT
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
DEFINE_string
(
infer_model
,
""
,
"model path"
);
DEFINE_string
(
infer_data
,
""
,
"data path"
);
DEFINE_int32
(
batch_size
,
10
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
DEFINE_int32
(
num_threads
,
1
,
"Running the inference program in multi-threads."
);
namespace
paddle
{
namespace
paddle
{
namespace
inference
{
namespace
inference
{
...
@@ -164,26 +147,6 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
...
@@ -164,26 +147,6 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
}
}
}
void
CompareResult
(
const
std
::
vector
<
PaddleTensor
>
&
outputs
,
const
std
::
vector
<
PaddleTensor
>
&
base_outputs
)
{
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
base_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
auto
&
out
=
outputs
[
i
];
auto
&
base_out
=
base_outputs
[
i
];
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
size_t
size1
=
std
::
accumulate
(
base_out
.
shape
.
begin
(),
base_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
PADDLE_ENFORCE_EQ
(
size
,
size1
);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
data
=
static_cast
<
float
*>
(
out
.
data
.
data
());
float
*
base_data
=
static_cast
<
float
*>
(
base_out
.
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
EXPECT_NEAR
(
data
[
i
],
base_data
[
i
],
1e-3
);
}
}
}
// Test with a really complicate model.
// Test with a really complicate model.
void
TestRNN1Prediction
(
bool
use_analysis
,
bool
activate_ir
,
int
num_threads
)
{
void
TestRNN1Prediction
(
bool
use_analysis
,
bool
activate_ir
,
int
num_threads
)
{
AnalysisConfig
config
;
AnalysisConfig
config
;
...
@@ -198,7 +161,6 @@ void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) {
...
@@ -198,7 +161,6 @@ void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) {
config
.
ir_passes
.
clear
();
// Do not exclude any pass.
config
.
ir_passes
.
clear
();
// Do not exclude any pass.
int
batch_size
=
FLAGS_batch_size
;
int
batch_size
=
FLAGS_batch_size
;
int
num_times
=
FLAGS_repeat
;
auto
base_predictor
=
auto
base_predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
...
@@ -213,45 +175,14 @@ void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) {
...
@@ -213,45 +175,14 @@ void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) {
base_predictor
->
Run
(
input_slots
,
&
base_outputs
);
base_predictor
->
Run
(
input_slots
,
&
base_outputs
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
input_slots_all
.
emplace_back
(
input_slots
);
if
(
num_threads
==
1
)
{
if
(
num_threads
==
1
)
{
// Prepare inputs.
TestOneThreadPrediction
(
config
,
input_slots_all
,
&
outputs
);
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs
);
}
PrintTime
(
batch_size
,
num_times
,
1
,
0
,
timer
.
toc
()
/
num_times
);
CompareResult
(
outputs
,
base_outputs
);
CompareResult
(
outputs
,
base_outputs
);
}
else
{
}
else
{
std
::
vector
<
std
::
thread
>
threads
;
// only return the output of first thread
std
::
vector
<
std
::
unique_ptr
<
PaddlePredictor
>>
predictors
;
TestMultiThreadPrediction
(
config
,
input_slots_all
,
&
outputs
,
num_threads
);
// TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
// because AttentionLSTM's hard code nodeid will be damanged.
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
predictors
.
emplace_back
(
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
));
}
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
// Each thread should have local input_slots and outputs.
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
FLAGS_infer_data
,
batch_size
);
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
;
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictors
[
tid
]
->
Run
(
input_slots
,
&
outputs
);
}
PrintTime
(
batch_size
,
num_times
,
num_threads
,
tid
,
timer
.
toc
()
/
num_times
);
CompareResult
(
outputs
,
base_outputs
);
});
}
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
threads
[
i
].
join
();
}
}
}
if
(
use_analysis
&&
activate_ir
)
{
if
(
use_analysis
&&
activate_ir
)
{
...
@@ -293,8 +224,7 @@ TEST(Analyzer, RNN_tests) {
...
@@ -293,8 +224,7 @@ TEST(Analyzer, RNN_tests) {
// Directly infer with the original model.
// Directly infer with the original model.
TestRNN1Prediction
(
false
,
false
,
i
);
TestRNN1Prediction
(
false
,
false
,
i
);
// Inference with the original model with the analysis turned on, the
// Inference with the original model with the analysis turned on, the
// analysis
// analysis module will transform the program to a data flow graph.
// module will transform the program to a data flow graph.
TestRNN1Prediction
(
true
,
false
,
i
);
TestRNN1Prediction
(
true
,
false
,
i
);
// Inference with analysis and IR. The IR module will fuse some large
// Inference with analysis and IR. The IR module will fuse some large
// kernels.
// kernels.
...
...
paddle/fluid/inference/tests/api/analyzer_text_classification_tester.cc
浏览文件 @
20b40cb0
...
@@ -12,23 +12,7 @@
...
@@ -12,23 +12,7 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
#include <gflags/gflags.h>
#include <glog/logging.h> // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files.
#include <gtest/gtest.h>
#include <fstream>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/api/timer.h"
DEFINE_string
(
infer_model
,
""
,
"Directory of the inference model."
);
DEFINE_string
(
infer_data
,
""
,
"Path of the dataset."
);
DEFINE_int32
(
batch_size
,
1
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"How many times to repeat run."
);
DEFINE_int32
(
topn
,
-
1
,
"Run top n batches of data to save time"
);
namespace
paddle
{
namespace
paddle
{
namespace
inference
{
namespace
inference
{
...
@@ -37,24 +21,25 @@ struct DataReader {
...
@@ -37,24 +21,25 @@ struct DataReader {
explicit
DataReader
(
const
std
::
string
&
path
)
explicit
DataReader
(
const
std
::
string
&
path
)
:
file
(
new
std
::
ifstream
(
path
))
{}
:
file
(
new
std
::
ifstream
(
path
))
{}
bool
NextBatch
(
PaddleTensor
*
tensor
,
int
batch_size
)
{
bool
NextBatch
(
std
::
vector
<
PaddleTensor
>
*
input
,
int
batch_size
)
{
PADDLE_ENFORCE_EQ
(
batch_size
,
1
);
PADDLE_ENFORCE_EQ
(
batch_size
,
1
);
std
::
string
line
;
std
::
string
line
;
tensor
->
lod
.
clear
();
PaddleTensor
tensor
;
tensor
->
lod
.
emplace_back
(
std
::
vector
<
size_t
>
({
0
}));
tensor
.
dtype
=
PaddleDType
::
INT64
;
tensor
.
lod
.
emplace_back
(
std
::
vector
<
size_t
>
({
0
}));
std
::
vector
<
int64_t
>
data
;
std
::
vector
<
int64_t
>
data
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
if
(
!
std
::
getline
(
*
file
,
line
))
return
false
;
if
(
!
std
::
getline
(
*
file
,
line
))
return
false
;
inference
::
split_to_int64
(
line
,
' '
,
&
data
);
inference
::
split_to_int64
(
line
,
' '
,
&
data
);
}
}
tensor
->
lod
.
front
().
push_back
(
data
.
size
());
tensor
.
lod
.
front
().
push_back
(
data
.
size
());
tensor
->
data
.
Resize
(
data
.
size
()
*
sizeof
(
int64_t
));
tensor
.
data
.
Resize
(
data
.
size
()
*
sizeof
(
int64_t
));
memcpy
(
tensor
->
data
.
data
(),
data
.
data
(),
data
.
size
()
*
sizeof
(
int64_t
));
memcpy
(
tensor
.
data
.
data
(),
data
.
data
(),
data
.
size
()
*
sizeof
(
int64_t
));
tensor
->
shape
.
clear
(
);
tensor
.
shape
.
push_back
(
data
.
size
()
);
tensor
->
shape
.
push_back
(
data
.
size
()
);
tensor
.
shape
.
push_back
(
1
);
tensor
->
shape
.
push_back
(
1
);
input
->
assign
({
tensor
}
);
return
true
;
return
true
;
}
}
...
@@ -68,32 +53,28 @@ void Main(int batch_size) {
...
@@ -68,32 +53,28 @@ void Main(int batch_size) {
config
.
model_dir
=
FLAGS_infer_model
;
config
.
model_dir
=
FLAGS_infer_model
;
config
.
use_gpu
=
false
;
config
.
use_gpu
=
false
;
config
.
enable_ir_optim
=
true
;
config
.
enable_ir_optim
=
true
;
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
std
::
vector
<
PaddleTensor
>
input_slots
(
1
);
// one batch starts
// data --
auto
&
input
=
input_slots
[
0
];
input
.
dtype
=
PaddleDType
::
INT64
;
inference
::
Timer
timer
;
std
::
vector
<
PaddleTensor
>
input_slots
,
output_slots
;
double
sum
=
0
;
DataReader
reader
(
FLAGS_infer_data
)
;
std
::
vector
<
PaddleTensor
>
output_slots
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
int
num_batches
=
0
;
if
(
FLAGS_test_all_data
)
{
for
(
int
t
=
0
;
t
<
FLAGS_repeat
;
t
++
)
{
LOG
(
INFO
)
<<
"test all data"
;
DataReader
reader
(
FLAGS_infer_data
);
int
num_batches
=
0
;
while
(
reader
.
NextBatch
(
&
input
,
FLAGS_batch_size
))
{
while
(
reader
.
NextBatch
(
&
input_slots
,
FLAGS_batch_size
))
{
if
(
FLAGS_topn
>
0
&&
num_batches
>
FLAGS_topn
)
break
;
input_slots_all
.
emplace_back
(
input_slots
);
timer
.
tic
();
CHECK
(
predictor
->
Run
(
input_slots
,
&
output_slots
));
sum
+=
timer
.
toc
();
++
num_batches
;
++
num_batches
;
}
}
LOG
(
INFO
)
<<
"total number of samples: "
<<
num_batches
*
FLAGS_batch_size
;
TestPrediction
(
config
,
input_slots_all
,
&
output_slots
,
FLAGS_num_threads
);
return
;
}
}
PrintTime
(
batch_size
,
FLAGS_repeat
,
1
,
0
,
sum
/
FLAGS_repeat
);
// one batch starts
// data --
reader
.
NextBatch
(
&
input_slots
,
FLAGS_batch_size
);
input_slots_all
.
emplace_back
(
input_slots
);
TestPrediction
(
config
,
input_slots_all
,
&
output_slots
,
FLAGS_num_threads
);
// Get output
// Get output
LOG
(
INFO
)
<<
"get outputs "
<<
output_slots
.
size
();
LOG
(
INFO
)
<<
"get outputs "
<<
output_slots
.
size
();
...
...
paddle/fluid/inference/tests/api/tester_helper.h
0 → 100644
浏览文件 @
20b40cb0
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <gtest/gtest.h>
#include <thread> // NOLINT
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string
(
infer_model
,
""
,
"model path"
);
DEFINE_string
(
infer_data
,
""
,
"data file"
);
DEFINE_int32
(
batch_size
,
1
,
"batch size."
);
DEFINE_int32
(
burning
,
0
,
"Burning before repeat."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
DEFINE_bool
(
test_all_data
,
false
,
"Test the all dataset in data file."
);
DEFINE_int32
(
num_threads
,
1
,
"Running the inference program in multi-threads."
);
namespace
paddle
{
namespace
inference
{
void
CompareResult
(
const
std
::
vector
<
PaddleTensor
>
&
outputs
,
const
std
::
vector
<
PaddleTensor
>
&
base_outputs
)
{
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
base_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
auto
&
out
=
outputs
[
i
];
auto
&
base_out
=
base_outputs
[
i
];
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
size_t
size1
=
std
::
accumulate
(
base_out
.
shape
.
begin
(),
base_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
PADDLE_ENFORCE_EQ
(
size
,
size1
);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
data
=
static_cast
<
float
*>
(
out
.
data
.
data
());
float
*
base_data
=
static_cast
<
float
*>
(
base_out
.
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
EXPECT_NEAR
(
data
[
i
],
base_data
[
i
],
1e-3
);
}
}
}
void
TestOneThreadPrediction
(
AnalysisConfig
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs
,
std
::
vector
<
PaddleTensor
>
*
outputs
)
{
int
batch_size
=
FLAGS_batch_size
;
int
num_times
=
FLAGS_repeat
;
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
inputs
.
size
();
j
++
)
{
predictor
->
Run
(
inputs
[
j
],
outputs
);
}
}
PrintTime
(
batch_size
,
num_times
,
1
,
0
,
timer
.
toc
()
/
num_times
,
inputs
.
size
());
}
void
TestMultiThreadPrediction
(
AnalysisConfig
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs
,
std
::
vector
<
PaddleTensor
>
*
outputs
,
int
num_threads
)
{
int
batch_size
=
FLAGS_batch_size
;
int
num_times
=
FLAGS_repeat
;
std
::
vector
<
std
::
thread
>
threads
;
std
::
vector
<
std
::
unique_ptr
<
PaddlePredictor
>>
predictors
;
// TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
// because AttentionLSTM's hard code nodeid will be damanged.
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
predictors
.
emplace_back
(
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
));
}
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
// Each thread should have local inputs and outputs.
// The inputs of each thread are all the same.
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs_tid
=
inputs
;
std
::
vector
<
PaddleTensor
>
outputs_tid
;
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
inputs_tid
.
size
();
j
++
)
{
predictors
[
tid
]
->
Run
(
inputs_tid
[
j
],
&
outputs_tid
);
}
}
PrintTime
(
batch_size
,
num_times
,
num_threads
,
tid
,
timer
.
toc
()
/
num_times
,
inputs_tid
.
size
());
});
}
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
threads
[
i
].
join
();
}
}
void
TestPrediction
(
AnalysisConfig
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs
,
std
::
vector
<
PaddleTensor
>
*
outputs
,
int
num_threads
)
{
if
(
num_threads
==
1
)
{
TestOneThreadPrediction
(
config
,
inputs
,
outputs
);
}
else
{
TestMultiThreadPrediction
(
config
,
inputs
,
outputs
,
num_threads
);
}
}
}
// namespace inference
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录