Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2070fb24
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2070fb24
编写于
2月 18, 2019
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
4. do the trt_engine optim during init.
add simple static mode loading test=develop
上级
ecc12fb4
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
195 addition
and
31 deletion
+195
-31
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+4
-0
paddle/fluid/inference/analysis/helper.h
paddle/fluid/inference/analysis/helper.h
+29
-0
paddle/fluid/inference/analysis/ir_pass_manager.cc
paddle/fluid/inference/analysis/ir_pass_manager.cc
+1
-0
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+52
-4
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/api/analysis_predictor.h
paddle/fluid/inference/api/analysis_predictor.h
+5
-1
paddle/fluid/inference/api/helper.h
paddle/fluid/inference/api/helper.h
+5
-0
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+4
-5
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+66
-1
paddle/fluid/inference/tensorrt/test_engine.cc
paddle/fluid/inference/tensorrt/test_engine.cc
+2
-3
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
+3
-0
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+21
-17
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
+2
-0
未找到文件。
paddle/fluid/inference/analysis/argument.h
浏览文件 @
2070fb24
...
...
@@ -99,6 +99,10 @@ struct Argument {
private: \
unique_ptr_t field__##_;
// Each predictor has an unique id.
// For now, this attr will help us to get the right
// trt_engine for each trt_engine_op for each predictor when using trt.
DECL_ARGUMENT_FIELD
(
predictor_id
,
PredictorID
,
int
);
// Model path
DECL_ARGUMENT_FIELD
(
model_dir
,
ModelDir
,
std
::
string
);
// Model specified with program and parameters files.
...
...
paddle/fluid/inference/analysis/helper.h
浏览文件 @
2070fb24
...
...
@@ -217,6 +217,35 @@ static std::string GetTrtCalibTableData(const std::string &model_opt_cache_dir,
return
""
;
}
static
std
::
string
GetTrtEngineSerializedPath
(
const
std
::
string
&
model_root
,
const
std
::
string
&
engine_key
)
{
return
model_root
+
"/trt_serialized_"
+
engine_key
;
}
static
std
::
string
GetTrtEngineSerializedData
(
const
std
::
string
&
model_opt_cache_dir
,
const
std
::
string
&
engine_key
)
{
std
::
string
trt_serialized_path
=
GetTrtEngineSerializedPath
(
model_opt_cache_dir
,
engine_key
);
if
(
FileExists
(
trt_serialized_path
))
{
VLOG
(
3
)
<<
"Trt serialized file: "
<<
trt_serialized_path
<<
"is found here"
;
std
::
ifstream
infile
(
trt_serialized_path
,
std
::
ios
::
in
);
std
::
stringstream
buffer
;
buffer
<<
infile
.
rdbuf
();
std
::
string
trt_engine_serialized_data
(
buffer
.
str
());
return
trt_engine_serialized_data
;
}
return
""
;
}
static
void
SaveTrtEngineSerializedDataToFile
(
const
std
::
string
&
trt_serialized_path
,
const
std
::
string
&
engine_serialized_data
)
{
std
::
ofstream
outfile
(
trt_serialized_path
);
outfile
<<
engine_serialized_data
;
outfile
.
close
();
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
...
...
paddle/fluid/inference/analysis/ir_pass_manager.cc
浏览文件 @
2070fb24
...
...
@@ -81,6 +81,7 @@ void IRPassManager::CreatePasses(Argument *argument,
pass
->
Set
(
"model_opt_cache_dir"
,
new
std
::
string
(
GetOrCreateModelOptCacheDir
(
model_opt_cache_dir
)));
pass
->
Set
(
"predictor_id"
,
new
int
(
argument
->
predictor_id
()));
}
pre_pass
=
pass_name
;
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
2070fb24
...
...
@@ -19,6 +19,8 @@
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include "paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/op_teller.h"
#include "paddle/fluid/string/pretty_log.h"
...
...
@@ -83,7 +85,8 @@ std::unique_ptr<framework::ir::Graph> analysis::TensorRtSubgraphPass::ApplyImpl(
}
std
::
string
GenerateEngineKey
(
const
std
::
set
<
std
::
string
>
&
engine_inputs
,
const
std
::
set
<
std
::
string
>
&
engine_outputs
)
{
const
std
::
set
<
std
::
string
>
&
engine_outputs
,
const
std
::
string
&
predictor_id
)
{
std
::
string
engine_hash_key
=
""
;
for
(
auto
name
:
engine_inputs
)
{
engine_hash_key
+=
name
;
...
...
@@ -91,6 +94,7 @@ std::string GenerateEngineKey(const std::set<std::string> &engine_inputs,
for
(
auto
name
:
engine_outputs
)
{
engine_hash_key
+=
name
;
}
engine_hash_key
+=
predictor_id
;
auto
engine_key
=
std
::
to_string
(
std
::
hash
<
std
::
string
>
()(
engine_hash_key
));
return
engine_key
;
}
...
...
@@ -205,8 +209,9 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
SetAttr
(
op_desc
->
Proto
(),
"parameters"
,
params
);
auto
enable_int8
=
Get
<
bool
>
(
"enable_int8"
);
auto
engine_key
=
GenerateEngineKey
(
input_names_with_id
,
output_names_with_id
);
int
predictor_id
=
Get
<
int
>
(
"predictor_id"
);
auto
engine_key
=
GenerateEngineKey
(
input_names_with_id
,
output_names_with_id
,
std
::
to_string
(
predictor_id
));
// Get "" when there is no cached calibration table data.
std
::
string
calibration_data
=
GetTrtCalibTableData
(
...
...
@@ -215,10 +220,53 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
SetAttr
(
op_desc
->
Proto
(),
"enable_int8"
,
enable_int8
);
SetAttr
(
op_desc
->
Proto
(),
"engine_key"
,
engine_key
);
SetAttr
(
op_desc
->
Proto
(),
"engine_serialized_data"
,
std
::
string
(
""
));
SetAttr
(
op_desc
->
Proto
(),
"engine_serialized_data_path"
,
GetTrtEngineSerializedPath
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
));
std
::
unique_ptr
<
tensorrt
::
TRTInt8Calibrator
>
calibrator
;
if
(
enable_int8
&&
calibration_data
.
size
()
!=
0
)
{
calibrator
.
reset
(
new
tensorrt
::
TRTInt8Calibrator
(
calibration_data
));
}
if
(
!
(
enable_int8
&&
calibration_data
.
size
()
==
0
))
{
// When in int8 mode and calibration_mode, the program just produce the
// calibration table data.
bool
calibration_mode
=
(
enable_int8
&&
calibration_data
.
size
()
==
0
);
if
(
!
calibration_mode
)
{
std
::
copy
(
params
.
begin
(),
params
.
end
(),
std
::
back_inserter
(
*
repetitive_params
));
std
::
string
trt_engine_serialized_data
=
GetTrtEngineSerializedData
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
);
tensorrt
::
TensorRTEngine
*
trt_engine
=
inference
::
Singleton
<
tensorrt
::
TRTEngineManager
>::
Global
().
Create
(
Get
<
int
>
(
"max_batch_size"
),
Get
<
int
>
(
"workspace_size"
),
enable_int8
,
calibrator
.
get
(),
engine_key
);
if
(
trt_engine_serialized_data
.
size
()
==
0
)
{
LOG
(
INFO
)
<<
"Prepare TRT engine (Optimize model structure, Select OP "
"kernel etc). This process may cost a lot of time."
;
auto
*
scope
=
param_scope
();
framework
::
BlockDesc
block_desc_temp
(
nullptr
,
block_desc
.
Proto
());
std
::
unordered_set
<
std
::
string
>
param_set
(
params
.
begin
(),
params
.
end
());
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
()
.
ConvertBlockToTRTEngine
(
&
block_desc_temp
,
*
scope
,
std
::
vector
<
std
::
string
>
(
input_names
.
begin
(),
input_names
.
end
()),
param_set
,
output_mapping
,
trt_engine
);
nvinfer1
::
IHostMemory
*
serialized_engine_data
=
trt_engine
->
Serialize
();
trt_engine_serialized_data
=
std
::
string
((
const
char
*
)
serialized_engine_data
->
data
(),
serialized_engine_data
->
size
());
// SaveTrtEngineSerializedDataToFile(GetTrtEngineSerializedPath(Get<std::string>("model_opt_cache_dir"),
// engine_key),
// trt_engine_serialized_data);
}
else
{
trt_engine
->
Deserialize
(
trt_engine_serialized_data
);
}
SetAttr
(
op_desc
->
Proto
(),
"engine_serialized_data"
,
trt_engine_serialized_data
);
}
}
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
2070fb24
...
...
@@ -342,6 +342,7 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
config_
.
static_memory_optim_force_update_
);
argument_
.
SetModelFromMemory
(
config_
.
model_from_memory_
);
// Analyze inference_program
argument_
.
SetPredictorID
(
predictor_id_
);
if
(
!
config_
.
model_dir
().
empty
())
{
argument_
.
SetModelDir
(
config_
.
model_dir
());
}
else
{
...
...
paddle/fluid/inference/api/analysis_predictor.h
浏览文件 @
2070fb24
...
...
@@ -21,6 +21,7 @@
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/string/printf.h"
#ifdef PADDLE_WITH_TESTING
...
...
@@ -43,7 +44,9 @@ using framework::NaiveExecutor;
*/
class
AnalysisPredictor
:
public
PaddlePredictor
{
public:
explicit
AnalysisPredictor
(
const
AnalysisConfig
&
config
)
:
config_
(
config
)
{}
explicit
AnalysisPredictor
(
const
AnalysisConfig
&
config
)
:
config_
(
config
)
{
predictor_id_
=
inference
::
GetUniqueId
();
}
~
AnalysisPredictor
();
bool
Init
(
const
std
::
shared_ptr
<
framework
::
Scope
>
&
parent_scope
,
...
...
@@ -143,6 +146,7 @@ class AnalysisPredictor : public PaddlePredictor {
const
size_t
max_shape_collect_count_
{
1000
};
int
need_collect_var_shapes_
{
-
1
};
// -1 for default, 0 for false, 1 for true.
std
::
vector
<
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>>
batch_var_shapes_
;
int
predictor_id_
;
private:
// Some status here that help to determine the status inside the predictor.
...
...
paddle/fluid/inference/api/helper.h
浏览文件 @
2070fb24
...
...
@@ -50,6 +50,11 @@ class Timer {
}
};
static
int
GetUniqueId
()
{
static
int
id
=
0
;
return
id
++
;
}
static
void
split
(
const
std
::
string
&
str
,
char
sep
,
std
::
vector
<
std
::
string
>
*
pieces
)
{
pieces
->
clear
();
...
...
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
2070fb24
...
...
@@ -143,6 +143,7 @@ class OpConverter {
}
}
// The scope here should be inited with the parameter vars.
void
ConvertBlockToTRTEngine
(
framework
::
BlockDesc
*
block_desc
,
const
framework
::
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
inputs
,
...
...
@@ -151,18 +152,16 @@ class OpConverter {
engine
->
InitNetwork
();
for
(
auto
&
input
:
inputs
)
{
if
(
parameters
.
count
(
input
))
continue
;
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
input
);
auto
t_shape
=
framework
::
vectorize
(
t
.
dims
());
auto
*
var
=
block_desc
->
FindVar
(
input
);
PADDLE_ENFORCE
(
var
,
"no variable called %s"
,
input
);
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
auto
var_shape
=
var
->
GetShape
();
engine
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
t
_shape
));
Vec2TRT_Dims
(
var
_shape
));
}
framework
::
proto
::
BlockDesc
*
block_proto
=
block_desc
->
Proto
();
ConvertBlock
(
*
block_proto
,
parameters
,
scope
,
engine
);
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
2070fb24
...
...
@@ -104,6 +104,34 @@ class TensorRTEngine {
nvinfer1
::
ICudaEngine
*
engine
()
{
return
infer_engine_
.
get
();
}
nvinfer1
::
INetworkDefinition
*
network
()
{
return
infer_network_
.
get
();
}
nvinfer1
::
IHostMemory
*
Serialize
()
{
PADDLE_ENFORCE
(
infer_engine_
!=
nullptr
,
"You should build engine first and then serialize"
);
ihost_memory_
.
reset
(
infer_engine_
->
serialize
());
return
ihost_memory_
.
get
();
}
void
Deserialize
(
const
std
::
string
&
engine_serialized_data
)
{
infer_ptr
<
nvinfer1
::
IRuntime
>
runtime
(
createInferRuntime
(
&
logger_
));
infer_engine_
.
reset
(
runtime
->
deserializeCudaEngine
(
engine_serialized_data
.
c_str
(),
engine_serialized_data
.
size
(),
nullptr
));
PADDLE_ENFORCE
(
infer_engine_
!=
nullptr
,
"build cuda engine failed when deserialize engine info.!"
);
infer_context_
.
reset
(
infer_engine_
->
createExecutionContext
());
}
void
Deserialize
(
const
nvinfer1
::
IHostMemory
*
engine_serialized_data
)
{
infer_ptr
<
nvinfer1
::
IRuntime
>
runtime
(
createInferRuntime
(
&
logger_
));
infer_engine_
.
reset
(
runtime
->
deserializeCudaEngine
(
engine_serialized_data
->
data
(),
engine_serialized_data
->
size
(),
nullptr
));
PADDLE_ENFORCE
(
infer_engine_
!=
nullptr
,
"build cuda engine failed when deserialize engine info.!"
);
infer_context_
.
reset
(
infer_engine_
->
createExecutionContext
());
}
void
SetRuntimeBatch
(
size_t
batch_size
);
int
GetRuntimeBatch
();
nvinfer1
::
IPluginLayer
*
AddPlugin
(
nvinfer1
::
ITensor
*
const
*
inputs
,
...
...
@@ -154,11 +182,11 @@ class TensorRTEngine {
infer_ptr
<
nvinfer1
::
INetworkDefinition
>
infer_network_
;
infer_ptr
<
nvinfer1
::
ICudaEngine
>
infer_engine_
;
infer_ptr
<
nvinfer1
::
IExecutionContext
>
infer_context_
;
infer_ptr
<
nvinfer1
::
IHostMemory
>
ihost_memory_
;
};
// class TensorRTEngine
// Add an layer__ into engine__ with args ARGS.
// For example:
// TRT_ENGINE_ADD_LAYER(xxx, FullyConnected, input, dim, weights, bias)
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
...
...
@@ -170,6 +198,43 @@ class TensorRTEngine {
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
engine__->network()->add##layer__(ARGS);
/*
* Helper to control the TensorRT engine's creation and deletion.
*/
class
TRTEngineManager
{
public:
bool
HasEngine
(
const
std
::
string
&
name
)
const
{
if
(
engines_
.
count
(
name
)
==
0
)
return
false
;
return
engines_
.
at
(
name
).
get
()
!=
nullptr
;
}
// Get an engine called `name`.
TensorRTEngine
*
Get
(
const
std
::
string
&
name
)
const
{
return
engines_
.
at
(
name
).
get
();
}
// Create or get an engine called `name`
TensorRTEngine
*
Create
(
int
max_batch
,
int
max_workspace
,
bool
enable_int8
,
TRTInt8Calibrator
*
calibrator
,
const
std
::
string
&
engine_name
)
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
mut_
);
auto
*
p
=
new
TensorRTEngine
(
max_batch
,
max_workspace
,
enable_int8
,
calibrator
);
engines_
[
engine_name
].
reset
(
p
);
return
p
;
}
void
DeleteALL
()
{
for
(
auto
&
item
:
engines_
)
{
item
.
second
.
reset
(
nullptr
);
}
}
private:
std
::
unordered_map
<
std
::
string
,
std
::
unique_ptr
<
TensorRTEngine
>>
engines_
;
std
::
mutex
mut_
;
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/test_engine.cc
浏览文件 @
2070fb24
...
...
@@ -191,9 +191,8 @@ TEST_F(TensorRTEngineTest, test_pool2d) {
std
::
vector
<
void
*>
buffers
(
2
);
// TRT binded inputs
nvinfer1
::
PoolingType
pool_t
=
nvinfer1
::
PoolingType
::
kAVERAGE
;
auto
*
pool_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Pooling
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
x
),
pool_t
,
nvinfer1
::
DimsHW
{
2
,
2
});
auto
*
pool_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Pooling
,
*
x
,
pool_t
,
nvinfer1
::
DimsHW
{
2
,
2
});
PADDLE_ENFORCE
(
pool_layer
!=
nullptr
);
pool_layer
->
setStride
(
nvinfer1
::
DimsHW
{
1
,
1
});
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
浏览文件 @
2070fb24
...
...
@@ -30,6 +30,9 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Ys"
,
"A list of outputs"
).
AsDuplicable
();
AddAttr
<
std
::
string
>
(
"subgraph"
,
"the subgraph."
);
AddAttr
<
std
::
string
>
(
"calibration_data"
,
"the calibration data for int8"
);
AddAttr
<
std
::
string
>
(
"engine_serialized_data"
,
"the serialized data contains the all info of the ICUDAEngine"
);
AddAttr
<
std
::
string
>
(
"engine_key"
,
"The engine_key here is used to distinguish different TRT Engines"
);
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
2070fb24
...
...
@@ -41,13 +41,14 @@ class TensorRTEngineOp : public framework::OperatorBase {
private:
std
::
vector
<
std
::
string
>
input_names_
;
std
::
unordered_set
<
std
::
string
>
param_names_
;
mutable
std
::
unique_ptr
<
TensorRTEngine
>
trt_engine_
;
mutable
TensorRTEngine
*
trt_engine_
;
int
max_batch_size_
;
int
workspace_size_
;
std
::
unique_ptr
<
TRTInt8Calibrator
>
calibrator_
;
bool
enable_int8_
;
std
::
string
calibration_data_
;
std
::
string
engine_key_
;
std
::
string
engine_serialized_data_
;
bool
calibration_mode_
;
public:
...
...
@@ -62,6 +63,8 @@ class TensorRTEngineOp : public framework::OperatorBase {
enable_int8_
=
Attr
<
bool
>
(
"enable_int8"
);
calibration_data_
=
Attr
<
std
::
string
>
(
"calibration_data"
);
engine_key_
=
Attr
<
std
::
string
>
(
"engine_key"
);
engine_serialized_data_
=
Attr
<
std
::
string
>
(
"engine_serialized_data"
);
trt_engine_
=
nullptr
;
auto
params
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"parameters"
);
for
(
const
auto
&
param
:
params
)
{
...
...
@@ -78,7 +81,12 @@ class TensorRTEngineOp : public framework::OperatorBase {
// we will create an engine here.
if
(
!
calibration_mode_
)
{
// trt_engine_.reset();
if
(
inference
::
Singleton
<
inference
::
tensorrt
::
TRTEngineManager
>::
Global
()
.
HasEngine
(
engine_key_
))
{
trt_engine_
=
inference
::
Singleton
<
inference
::
tensorrt
::
TRTEngineManager
>::
Global
()
.
Get
(
engine_key_
);
}
}
}
...
...
@@ -99,7 +107,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
RunCalibration
(
scope
,
dev_place
);
return
;
}
auto
trt_engine
=
GetEngine
(
scope
,
dev_place
);
auto
*
trt_engine
=
GetEngine
(
scope
,
dev_place
);
RunTrt
(
scope
,
dev_place
,
trt_engine
);
}
...
...
@@ -158,7 +166,6 @@ class TensorRTEngineOp : public framework::OperatorBase {
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
dev_ctx
).
stream
();
// auto *engine = trt_engine_.get();
PADDLE_ENFORCE
(
!
input_names_
.
empty
(),
"should pass more than one inputs"
);
std
::
vector
<
std
::
string
>
output_maps
=
...
...
@@ -192,8 +199,9 @@ class TensorRTEngineOp : public framework::OperatorBase {
int
output_index
=
0
;
VLOG
(
4
)
<<
"TensorRT Engine Op Outputs:"
;
for
(
const
auto
&
y
:
Outputs
(
"Ys"
))
{
nvinfer1
::
ITensor
*
trt_t
=
engine
->
GetITensor
(
output_maps
[
output_index
]);
auto
dims
=
trt_t
->
getDimensions
();
const
int
bind_index
=
engine
->
engine
()
->
getBindingIndex
(
output_maps
[
output_index
].
c_str
());
auto
dims
=
engine
->
engine
()
->
getBindingDimensions
(
bind_index
);
// Use the output ITensor's dims to reshape the Fluid Tensor.
// The ITensor doesn't contain the batch size dim.
std
::
vector
<
int
>
ddim
;
...
...
@@ -206,8 +214,6 @@ class TensorRTEngineOp : public framework::OperatorBase {
auto
*
fluid_t
=
fluid_v
->
GetMutable
<
framework
::
LoDTensor
>
();
fluid_t
->
Resize
(
framework
::
make_ddim
(
ddim
));
const
int
bind_index
=
engine
->
engine
()
->
getBindingIndex
(
output_maps
[
output_index
].
c_str
());
PADDLE_ENFORCE
(
bind_index
<
num_bindings
,
"The bind index should be less than num_bindings"
);
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
fluid_t
->
mutable_data
<
float
>
(
...
...
@@ -224,16 +230,14 @@ class TensorRTEngineOp : public framework::OperatorBase {
TensorRTEngine
*
GetEngine
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
{
if
(
trt_engine_
.
get
()
==
nullptr
)
{
trt_engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
enable_int8_
,
calibrator_
.
get
()));
if
(
true
)
{
PrepareTRTEngine
(
scope
,
trt_engine_
.
get
());
}
else
{
// create static engine
}
if
(
trt_engine_
==
nullptr
)
{
trt_engine_
=
inference
::
Singleton
<
inference
::
tensorrt
::
TRTEngineManager
>::
Global
()
.
Create
(
max_batch_size_
,
workspace_size_
,
enable_int8_
,
calibrator_
.
get
(),
engine_key_
);
PrepareTRTEngine
(
scope
,
trt_engine_
);
}
return
trt_engine_
.
get
()
;
return
trt_engine_
;
}
void
PrepareTRTEngine
(
const
framework
::
Scope
&
scope
,
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
浏览文件 @
2070fb24
...
...
@@ -107,6 +107,7 @@ TEST(TensorRTEngineOp, manual) {
engine_op_desc
.
SetAttr
(
"output_name_mapping"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
engine_op_desc
.
SetAttr
(
"subgraph"
,
std
::
string
(
block_
->
SerializeAsString
()));
engine_op_desc
.
SetAttr
(
"engine_serialized_data"
,
std
::
string
(
""
));
LOG
(
INFO
)
<<
"create engine op"
;
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
engine_op_desc
);
...
...
@@ -202,6 +203,7 @@ void Execute(int batch_size, int input_dim, int output_dim, int nlayers = 1) {
engine_op_desc
.
SetAttr
(
"output_name_mapping"
,
std
::
vector
<
std
::
string
>
({
"z3"
}));
engine_op_desc
.
SetAttr
(
"subgraph"
,
std
::
string
(
block_
->
SerializeAsString
()));
engine_op_desc
.
SetAttr
(
"engine_serialized_data"
,
std
::
string
(
""
));
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
engine_op_desc
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录