Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
206f32c1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
206f32c1
编写于
11月 06, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
deconv2d kernel and deconv3d kernel write together
上级
0f1b30ef
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
111 addition
and
257 deletion
+111
-257
paddle/operators/conv2d_transpose_cudnn_op.cc
paddle/operators/conv2d_transpose_cudnn_op.cc
+2
-2
paddle/operators/conv_transpose_op.cc
paddle/operators/conv_transpose_op.cc
+4
-4
paddle/operators/conv_transpose_op.cu
paddle/operators/conv_transpose_op.cu
+4
-4
paddle/operators/conv_transpose_op.h
paddle/operators/conv_transpose_op.h
+101
-247
未找到文件。
paddle/operators/conv2d_transpose_cudnn_op.cc
浏览文件 @
206f32c1
...
@@ -44,7 +44,7 @@ REGISTER_OP(conv2d_transpose_cudnn, ops::ConvTransposeOp,
...
@@ -44,7 +44,7 @@ REGISTER_OP(conv2d_transpose_cudnn, ops::ConvTransposeOp,
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
conv2d_transpose_cudnn
,
conv2d_transpose_cudnn
,
ops
::
GemmConv
2D
TransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
conv2d_transpose_cudnn_grad
,
conv2d_transpose_cudnn_grad
,
ops
::
GemmConv
2D
TransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/conv_transpose_op.cc
浏览文件 @
206f32c1
...
@@ -187,17 +187,17 @@ REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
...
@@ -187,17 +187,17 @@ REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
conv2d_transpose
,
conv2d_transpose
,
ops
::
GemmConv
2D
TransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
conv2d_transpose_grad
,
conv2d_transpose_grad
,
ops
::
GemmConv
2D
TransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP
(
conv3d_transpose
,
ops
::
ConvTransposeOp
,
ops
::
Conv3DTransposeOpMaker
,
REGISTER_OP
(
conv3d_transpose
,
ops
::
ConvTransposeOp
,
ops
::
Conv3DTransposeOpMaker
,
conv3d_transpose_grad
,
ops
::
ConvTransposeOpGrad
);
conv3d_transpose_grad
,
ops
::
ConvTransposeOpGrad
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
conv3d_transpose
,
conv3d_transpose
,
ops
::
GemmConv
3D
TransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
conv3d_transpose_grad
,
conv3d_transpose_grad
,
ops
::
GemmConv
3D
TransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/conv_transpose_op.cu
浏览文件 @
206f32c1
...
@@ -18,14 +18,14 @@ namespace ops = paddle::operators;
...
@@ -18,14 +18,14 @@ namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL
(
REGISTER_OP_GPU_KERNEL
(
conv2d_transpose
,
conv2d_transpose
,
ops
::
GemmConv
2D
TransposeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
REGISTER_OP_GPU_KERNEL
(
conv2d_transpose_grad
,
conv2d_transpose_grad
,
ops
::
GemmConv
2D
TransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
REGISTER_OP_GPU_KERNEL
(
conv3d_transpose
,
conv3d_transpose
,
ops
::
GemmConv
3D
TransposeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
REGISTER_OP_GPU_KERNEL
(
conv3d_transpose_grad
,
conv3d_transpose_grad
,
ops
::
GemmConv
3D
TransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/conv_transpose_op.h
浏览文件 @
206f32c1
...
@@ -57,7 +57,7 @@ class ConvTransposeOpGrad : public framework::OperatorWithKernel {
...
@@ -57,7 +57,7 @@ class ConvTransposeOpGrad : public framework::OperatorWithKernel {
};
};
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
class
GemmConv
2D
TransposeKernel
:
public
framework
::
OpKernel
<
T
>
{
class
GemmConvTransposeKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
...
@@ -70,24 +70,31 @@ class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
...
@@ -70,24 +70,31 @@ class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
// groups will alway be disabled in conv2dtranspose.
// groups will alway be disabled in conv2dtranspose.
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int64_t
m
=
input
->
dims
()[
1
];
const
int64_t
h
=
input
->
dims
()[
2
];
const
int64_t
w
=
input
->
dims
()[
3
];
const
int64_t
k_h
=
filter
.
dims
()[
2
];
// input_shape_vec: {h, w} or {d, h, w}
const
int64_t
k_w
=
filter
.
dims
()[
3
];
std
::
vector
<
int64_t
>
input_shape_vec
=
framework
::
vectorize
(
input
->
dims
());
input_shape_vec
.
erase
(
input_shape_vec
.
begin
(),
input_shape_vec
.
begin
()
+
2
);
const
int64_t
c
=
output
->
dims
()[
1
];
// output channels
const
int64_t
o_h
=
output
->
dims
()[
2
];
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
const
int64_t
o_w
=
output
->
dims
()[
3
];
std
::
vector
<
int64_t
>
filter_shape_vec
=
framework
::
vectorize
(
filter
.
dims
());
filter_shape_vec
.
erase
(
filter_shape_vec
.
begin
(),
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
col2im
;
filter_shape_vec
.
begin
()
+
2
);
// use col_shape in the im2col and col2im calculation
// use col_shape in the im2col and col2im (or vol2col and col2vol)
DDim
col_shape
=
{
c
,
k_h
,
k_w
,
h
,
w
};
// calculation
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
std
::
vector
<
int64_t
>
col_shape_vec
;
col_shape_vec
.
push_back
(
output
->
dims
()[
1
]);
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
(),
filter_shape_vec
.
end
());
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
input_shape_vec
.
begin
(),
input_shape_vec
.
end
());
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
// use col_matrix_shape in the gemm calculation
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape
=
{
c
*
k_h
*
k_w
,
h
*
w
};
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
+
1
);
Tensor
col
;
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
...
@@ -98,47 +105,61 @@ class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
...
@@ -98,47 +105,61 @@ class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
Resize
(
col_matrix_shape
);
DDim
output_shape
=
{
c
,
o_h
,
o_w
};
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
DDim
input_matrix_shape
=
{
m
,
h
*
w
};
DDim
output_shape
=
framework
::
slice_ddim
(
output
->
dims
(),
1
,
output
->
dims
().
size
());
// filter size: (m, c * k_h * k_w)
// input matrix size: (m, h * w) or (m, d * h * w)
DDim
filter_matrix_shape
=
{
m
,
c
*
k_h
*
k_w
};
DDim
input_matrix_shape
=
{
input
->
dims
()[
1
],
col_matrix_shape
[
1
]};
// filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
DDim
filter_matrix_shape
=
{
input
->
dims
()[
1
],
col_matrix_shape
[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
filter
.
Resize
(
filter_matrix_shape
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set_zero
;
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
context
.
device_context
(),
output
,
static_cast
<
T
>
(
0
));
set_zero
(
context
.
device_context
(),
output
,
static_cast
<
T
>
(
0
));
// convolution transpose: gemm + col2im (similar to conv-backward on input)
// convolution transpose: gemm + col2im or col2vol (similar to conv-backward
// on input)
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// batch with size (m, h * w)
// batch with size (m, h * w)
or (m, d * h * w)
Tensor
input_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
Tensor
input_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// output size: (c, o_h, o_w)
// output size: (c, o_h, o_w)
or (c, o_d, o_h, o_w)
Tensor
output_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
Tensor
output_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// col_matrix = filter * input_batch
// col_matrix = filter * input_batch
// of shape (c * k_h * k_w, h * w)
// of shape (c * k_h * k_w, h * w)
or (c * k_d * k_h * k_w, d * h * w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
true
,
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
true
,
input_batch
,
false
,
static_cast
<
T
>
(
1.0
),
input_batch
,
false
,
static_cast
<
T
>
(
1.0
),
&
col_matrix
,
static_cast
<
T
>
(
0.0
));
&
col_matrix
,
static_cast
<
T
>
(
0.0
));
// col2im: col_matrix -> dy
if
(
filter_shape_vec
.
size
()
==
2
)
{
// from (c * k_h * k_w, h * w) to (c, o_h, o_w)
// col2im: col_matrix -> dy
col2im
(
context
.
device_context
(),
output_batch
,
col
,
strides
[
0
],
// from (c * k_h * k_w, h * w) to (c, o_h, o_w)
strides
[
1
],
0
,
0
,
0
,
0
);
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
col2im
;
col2im
(
context
.
device_context
(),
output_batch
,
col
,
strides
[
0
],
strides
[
1
],
0
,
0
,
0
,
0
);
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
// col2vol: col_matrix -> dy
// from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
math
::
Col2VolFunctor
<
Place
,
T
>
col2vol
;
col2vol
(
context
.
device_context
(),
output_batch
,
col
,
strides
[
0
],
strides
[
1
],
strides
[
2
],
0
,
0
,
0
);
}
}
}
}
}
};
};
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
class
GemmConv
2D
TransposeGradKernel
:
public
framework
::
OpKernel
<
T
>
{
class
GemmConvTransposeGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
output_grad
=
const
Tensor
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
// For filter, we do not use const pointer b/c we will do reshape,
// For filter, we do not use const pointer b/c we will do reshape,
// but we should avoid modifying its value.
// but we should avoid modifying its value.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
...
@@ -147,38 +168,50 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -147,38 +168,50 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
Tensor
*
filter_grad
=
Tensor
*
filter_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
if
((
!
input_grad
)
&&
(
!
filter_grad
))
return
;
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
// Actually, no paddings and groups allowed in conv transpose.
// Actually, no paddings and groups allowed in conv transpose.
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int64_t
m
=
input
->
dims
()[
1
];
const
int64_t
h
=
input
->
dims
()[
2
];
const
int64_t
w
=
input
->
dims
()[
3
];
const
int64_t
k_h
=
filter
.
dims
()[
2
];
// input_shape_vec: {h, w} or {d, h, w}
const
int64_t
k_w
=
filter
.
dims
()[
3
];
std
::
vector
<
int64_t
>
input_shape_vec
=
framework
::
vectorize
(
input
->
dims
());
input_shape_vec
.
erase
(
input_shape_vec
.
begin
(),
input_shape_vec
.
begin
()
+
2
);
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
std
::
vector
<
int64_t
>
filter_shape_vec
=
framework
::
vectorize
(
filter
.
dims
());
filter_shape_vec
.
erase
(
filter_shape_vec
.
begin
(),
filter_shape_vec
.
begin
()
+
2
);
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// calculation
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
std
::
vector
<
int64_t
>
col_shape_vec
;
col_shape_vec
.
push_back
(
output_grad
->
dims
()[
1
]);
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
(),
filter_shape_vec
.
end
());
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
input_shape_vec
.
begin
(),
input_shape_vec
.
end
());
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
const
int64_t
c
=
output_grad
->
dims
()[
1
];
// output channels
// use col_matrix_shape in the gemm calculation
const
int64_t
o_h
=
output_grad
->
dims
()[
2
];
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
const
int64_t
o_w
=
output_grad
->
dims
()[
3
];
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
+
1
);
// Only im2col functor required for bp to get to the right shape
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
// use col_shape in the im2col and col2im calculation
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
DDim
col_shape
=
{
c
,
k_h
,
k_w
,
h
,
w
};
DDim
output_shape
=
framework
::
slice_ddim
(
output_grad
->
dims
(),
1
,
output_grad
->
dims
().
size
());
DDim
output_shape
=
{
c
,
o_h
,
o_w
};
// input matrix size: (m, h * w) or (m, d * h * w)
DDim
input_matrix_shape
=
{
m
,
h
*
w
};
DDim
input_matrix_shape
=
{
input
->
dims
()[
1
],
col_matrix_shape
[
1
]
};
DDim
filter_matrix_shape
=
{
m
,
c
*
k_h
*
k_w
};
// filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
DDim
filter_matrix_shape
=
{
input
->
dims
()[
1
],
col_matrix_shape
[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
filter
.
Resize
(
filter_matrix_shape
);
if
((
!
input_grad
)
&&
(
!
filter_grad
))
{
return
;
}
// convolution transpose grad on input:
// convolution transpose grad on input:
// im2col + gemm (similar to conv-forward)
// im2col + gemm (similar to conv-forward)
// input need to compute gradient
// input need to compute gradient
...
@@ -190,7 +223,6 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -190,7 +223,6 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
// to call the matrix multiplication interface.
// to call the matrix multiplication interface.
Tensor
col_matrix
;
Tensor
col_matrix
;
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
ShareDataWith
(
col
);
DDim
col_matrix_shape
=
{
c
*
k_h
*
k_w
,
h
*
w
};
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
Resize
(
col_matrix_shape
);
Tensor
filter_grad_
;
Tensor
filter_grad_
;
...
@@ -212,10 +244,21 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -212,10 +244,21 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
Tensor
output_grad_batch
=
Tensor
output_grad_batch
=
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// im2col: dy -> col matrix
if
(
filter_shape_vec
.
size
()
==
2
)
{
// from (c, o_h, o_w) to (c * k_h * k_w, h * w)
// im2col: dy -> col matrix
im2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
// from (c, o_h, o_w) to (c * k_h * k_w, h * w)
strides
[
1
],
paddings
[
0
],
paddings
[
0
],
paddings
[
1
],
paddings
[
1
]);
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
im2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
0
],
paddings
[
1
],
paddings
[
1
]);
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
// vol2col: dy -> col_matrix
// from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
math
::
Vol2ColFunctor
<
Place
,
T
>
vol2col
;
vol2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
}
if
(
input_grad
)
{
if
(
input_grad
)
{
// batch with size (m, h, w)
// batch with size (m, h, w)
...
@@ -223,197 +266,7 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -223,197 +266,7 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// gemm: dx = filter * dy
// gemm: dx = filter * dy
// (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
// (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
false
,
// or
col_matrix
,
false
,
static_cast
<
T
>
(
1.0
),
&
input_grad_batch
,
static_cast
<
T
>
(
0.0
));
}
if
(
filter_grad
)
{
// input batch
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// gemm: d_filter = x * dy^T
// (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
in_batch
,
false
,
col_matrix
,
true
,
static_cast
<
T
>
(
1.0
),
&
filter_grad_
,
static_cast
<
T
>
(
1.0
));
}
}
}
}
};
template
<
typename
Place
,
typename
T
>
class
GemmConv3DTransposeKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
// The filter will be reshaped, so it should not be constant pointer
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
// TODO(chengduo): Paddings can be added in future.
// groups will alway be disabled in conv3dtranspose.
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int64_t
m
=
input
->
dims
()[
1
];
const
int64_t
d
=
input
->
dims
()[
2
];
const
int64_t
h
=
input
->
dims
()[
3
];
const
int64_t
w
=
input
->
dims
()[
4
];
const
int64_t
k_d
=
filter
.
dims
()[
2
];
const
int64_t
k_h
=
filter
.
dims
()[
3
];
const
int64_t
k_w
=
filter
.
dims
()[
4
];
const
int64_t
c
=
output
->
dims
()[
1
];
// output channels
const
int64_t
o_d
=
output
->
dims
()[
2
];
const
int64_t
o_h
=
output
->
dims
()[
3
];
const
int64_t
o_w
=
output
->
dims
()[
4
];
math
::
Col2VolFunctor
<
Place
,
T
>
col2vol
;
// use col_shape in the vol2col and col2vol calculation
DDim
col_shape
=
{
c
,
k_d
,
k_h
,
k_w
,
d
,
h
,
w
};
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape
=
{
c
*
k_d
*
k_h
*
k_w
,
d
*
h
*
w
};
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor
col_matrix
;
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
DDim
output_shape
=
{
c
,
o_d
,
o_h
,
o_w
};
DDim
input_matrix_shape
=
{
m
,
d
*
h
*
w
};
// filter size: (m, c * k_d * k_h * k_w)
DDim
filter_matrix_shape
=
{
m
,
c
*
k_d
*
k_h
*
k_w
};
filter
.
Resize
(
filter_matrix_shape
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
context
.
device_context
(),
output
,
static_cast
<
T
>
(
0
));
// convolution transpose: gemm + col2vol (similar to conv-backward on input)
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// batch with size (m, d * h * w)
Tensor
input_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// output size: (c, o_d, o_h, o_w)
Tensor
output_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// col_matrix = filter * input_batch
// of shape (c * k_d * k_h * k_w, d * h * w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
true
,
input_batch
,
false
,
static_cast
<
T
>
(
1.0
),
&
col_matrix
,
static_cast
<
T
>
(
0.0
));
// col2vol: col_matrix -> dy
// from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
col2vol
(
context
.
device_context
(),
output_batch
,
col
,
strides
[
0
],
strides
[
1
],
strides
[
2
],
0
,
0
,
0
);
}
}
};
template
<
typename
Place
,
typename
T
>
class
GemmConv3DTransposeGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
// For filter, we do not use const pointer b/c we will do reshape,
// but we should avoid modifying its value.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
input_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
filter_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
// Actually, no paddings and groups allowed in conv transpose.
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int64_t
m
=
input
->
dims
()[
1
];
const
int64_t
d
=
input
->
dims
()[
2
];
const
int64_t
h
=
input
->
dims
()[
3
];
const
int64_t
w
=
input
->
dims
()[
4
];
const
int64_t
k_d
=
filter
.
dims
()[
2
];
const
int64_t
k_h
=
filter
.
dims
()[
3
];
const
int64_t
k_w
=
filter
.
dims
()[
4
];
const
int64_t
c
=
output_grad
->
dims
()[
1
];
// output channels
const
int64_t
o_d
=
output_grad
->
dims
()[
2
];
const
int64_t
o_h
=
output_grad
->
dims
()[
3
];
const
int64_t
o_w
=
output_grad
->
dims
()[
4
];
// Only vol2col functor required for bp to get to the right shape
math
::
Vol2ColFunctor
<
Place
,
T
>
vol2col
;
// use col_shape in the vol2col and col2vol calculation
DDim
col_shape
=
{
c
,
k_d
,
k_h
,
k_w
,
d
,
h
,
w
};
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape_f
=
{
c
*
d
*
h
*
w
,
k_d
*
k_h
*
k_w
};
DDim
output_shape
=
{
c
,
o_d
,
o_h
,
o_w
};
DDim
input_matrix_shape
=
{
m
,
d
*
h
*
w
};
DDim
filter_matrix_shape
=
{
m
,
c
*
k_d
*
k_h
*
k_w
};
filter
.
Resize
(
filter_matrix_shape
);
if
((
!
input_grad
)
&&
(
!
filter_grad
))
{
return
;
}
// convolution transpose grad on input:
// vol2col + gemm (similar to conv-forward)
// input need to compute gradient
if
(
input_grad
||
filter_grad
)
{
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor
col_matrix
;
col_matrix
.
ShareDataWith
(
col
);
DDim
col_matrix_shape
=
{
c
*
k_d
*
k_h
*
k_w
,
d
*
h
*
w
};
col_matrix
.
Resize
(
col_matrix_shape
);
Tensor
filter_grad_
;
math
::
SetConstant
<
Place
,
T
>
set_zero
;
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
set_zero
(
context
.
device_context
(),
input_grad
,
static_cast
<
T
>
(
0
));
}
if
(
filter_grad
)
{
// filter size (m, c * k_d * k_h * k_w)
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
set_zero
(
context
.
device_context
(),
filter_grad
,
static_cast
<
T
>
(
0
));
filter_grad_
=
*
filter_grad
;
filter_grad_
.
Resize
(
filter_matrix_shape
);
}
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// batch with size (c, o_d * o_h * o_w)
Tensor
output_grad_batch
=
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// vol2col: dy -> col_matrix
// from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
vol2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
if
(
input_grad
)
{
// batch with size (m, d, h, w)
Tensor
input_grad_batch
=
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// gemm: dx = filter * dy
// (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
// (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
// d, h, w)
// d, h, w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
false
,
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
false
,
...
@@ -424,6 +277,8 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -424,6 +277,8 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
// input batch
// input batch
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// gemm: d_filter = x * dy^T
// gemm: d_filter = x * dy^T
// (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
// or
// (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
// (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
// k_h * k_w)
// k_h * k_w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
in_batch
,
false
,
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
in_batch
,
false
,
...
@@ -434,6 +289,5 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -434,6 +289,5 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
}
}
}
}
};
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录