Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
20659fc9
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
20659fc9
编写于
9月 03, 2018
作者:
T
tensor-tang
提交者:
GitHub
9月 03, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13107 from tensor-tang/optimize/op/fusion_gru
Optimize fusion gru
上级
11bf6b26
c7adb99a
变更
3
展开全部
显示空白变更内容
内联
并排
Showing
3 changed file
with
383 addition
and
168 deletion
+383
-168
paddle/fluid/operators/fusion_gru_op.cc
paddle/fluid/operators/fusion_gru_op.cc
+263
-163
paddle/fluid/operators/math/cpu_vec.h
paddle/fluid/operators/math/cpu_vec.h
+115
-0
paddle/fluid/operators/math/sequence2batch.h
paddle/fluid/operators/math/sequence2batch.h
+5
-5
未找到文件。
paddle/fluid/operators/fusion_gru_op.cc
浏览文件 @
20659fc9
此差异已折叠。
点击以展开。
paddle/fluid/operators/math/cpu_vec.h
浏览文件 @
20659fc9
...
...
@@ -132,6 +132,121 @@ inline void vec_scal<float, platform::jit::avx512_common>(const int n,
vec_scal
<
float
,
platform
::
jit
::
avx2
>
(
n
,
a
,
x
,
y
);
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_bias_sub
(
const
int
n
,
const
T
a
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
a
-
x
[
i
];
}
}
template
<
>
inline
void
vec_bias_sub
<
float
,
platform
::
jit
::
avx
>
(
const
int
n
,
const
float
a
,
const
float
*
x
,
float
*
y
)
{
#ifdef __AVX__
constexpr
int
block
=
AVX_FLOAT_BLOCK
;
if
(
n
<
block
)
{
vec_bias_sub
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
a
,
x
,
y
);
return
;
}
const
int
rest
=
n
%
block
;
const
int
end
=
n
-
rest
;
int
i
=
0
;
__m256
bias
=
_mm256_set1_ps
(
a
);
__m256
tmp
;
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_sub_ps(bias, tmp); \
_mm256_storeu_ps(y + i, tmp)
for
(
i
=
0
;
i
<
end
;
i
+=
block
)
{
MOVE_ONE_STEP
;
}
#undef MOVE_ONE_STEP
if
(
rest
==
0
)
{
return
;
}
// can not continue move step if src and dst are inplace
for
(
i
=
n
-
rest
;
i
<
n
;
++
i
)
{
y
[
i
]
=
a
-
x
[
i
];
}
#else
vec_bias_sub
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
a
,
x
,
y
);
#endif
}
template
<
>
inline
void
vec_bias_sub
<
float
,
platform
::
jit
::
avx2
>
(
const
int
n
,
const
float
a
,
const
float
*
x
,
float
*
y
)
{
vec_bias_sub
<
float
,
platform
::
jit
::
avx
>
(
n
,
a
,
x
,
y
);
}
template
<
>
inline
void
vec_bias_sub
<
float
,
platform
::
jit
::
avx512_common
>
(
const
int
n
,
const
float
a
,
const
float
*
x
,
float
*
y
)
{
// TODO(TJ): enable me
vec_bias_sub
<
float
,
platform
::
jit
::
avx2
>
(
n
,
a
,
x
,
y
);
}
// out = x*y + (1-x)*z
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_cross
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
const
T
*
z
,
T
*
out
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
out
[
i
]
=
x
[
i
]
*
y
[
i
]
+
(
static_cast
<
T
>
(
1
)
-
x
[
i
])
*
z
[
i
];
}
}
template
<
>
inline
void
vec_cross
<
float
,
platform
::
jit
::
avx
>
(
const
int
n
,
const
float
*
x
,
const
float
*
y
,
const
float
*
z
,
float
*
out
)
{
#ifdef __AVX__
constexpr
int
block
=
AVX_FLOAT_BLOCK
;
if
(
n
<
block
)
{
vec_cross
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
x
,
y
,
z
,
out
);
return
;
}
const
int
rest
=
n
%
block
;
const
int
end
=
n
-
rest
;
int
i
=
0
;
__m256
bias
=
_mm256_set1_ps
(
1.
f
);
__m256
tmpx
,
tmpy
,
tmpz
;
for
(
i
=
0
;
i
<
end
;
i
+=
block
)
{
tmpx
=
_mm256_loadu_ps
(
x
+
i
);
tmpy
=
_mm256_loadu_ps
(
y
+
i
);
tmpz
=
_mm256_loadu_ps
(
z
+
i
);
tmpy
=
_mm256_mul_ps
(
tmpx
,
tmpy
);
tmpx
=
_mm256_sub_ps
(
bias
,
tmpx
);
tmpz
=
_mm256_mul_ps
(
tmpx
,
tmpz
);
tmpz
=
_mm256_add_ps
(
tmpy
,
tmpz
);
_mm256_storeu_ps
(
out
+
i
,
tmpz
);
}
if
(
rest
==
0
)
{
return
;
}
// can not continue move step if src and dst are inplace
for
(
i
=
n
-
rest
;
i
<
n
;
++
i
)
{
out
[
i
]
=
x
[
i
]
*
y
[
i
]
+
(
1.
f
-
x
[
i
])
*
z
[
i
];
}
#else
vec_cross
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
x
,
y
,
z
,
out
);
#endif
}
template
<
>
inline
void
vec_cross
<
float
,
platform
::
jit
::
avx2
>
(
const
int
n
,
const
float
*
x
,
const
float
*
y
,
const
float
*
z
,
float
*
out
)
{
vec_cross
<
float
,
platform
::
jit
::
avx
>
(
n
,
x
,
y
,
z
,
out
);
}
template
<
>
inline
void
vec_cross
<
float
,
platform
::
jit
::
avx512_common
>
(
const
int
n
,
const
float
*
x
,
const
float
*
y
,
const
float
*
z
,
float
*
out
)
{
// TODO(TJ): enable me
vec_cross
<
float
,
platform
::
jit
::
avx
>
(
n
,
x
,
y
,
z
,
out
);
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_add_bias
(
const
int
n
,
const
T
a
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
...
...
paddle/fluid/operators/math/sequence2batch.h
浏览文件 @
20659fc9
...
...
@@ -92,7 +92,7 @@ class LoDTensor2BatchFunctor {
// Calculate the start position of each batch.
// example: sequences = {s0, s1, s2}
// s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
//
num_batch
= 5,
//
max_seqlen
= 5,
// batchIndex = {b0, b1, b2, b3, b4}
// b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
// batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
...
...
@@ -109,7 +109,7 @@ class LoDTensor2BatchFunctor {
// where 1 is the second sequence,
// 0 is the first sequence,
// 2 is the third sequence.
// The
num_batch
represents batch size after rearranging the
// The
max_seqlen
represents batch size after rearranging the
// input LodTensor. It is also the maximum length of input sequence.
paddle
::
framework
::
LoD
batch_lods
;
...
...
@@ -118,8 +118,8 @@ class LoDTensor2BatchFunctor {
batch_lods
.
emplace_back
(
std
::
vector
<
size_t
>
{
0
});
// batch_lods[0] is the start positions for batch LoDTensor
int
num_batch
=
seq_info
[
0
].
length
;
batch_lods
[
0
].
resize
(
static_cast
<
size_t
>
(
num_batch
+
1
));
int
max_seqlen
=
seq_info
[
0
].
length
;
batch_lods
[
0
].
resize
(
static_cast
<
size_t
>
(
max_seqlen
+
1
));
// batch_lods[1] is the raw index in the input LoDTensor
batch_lods
[
1
].
resize
(
static_cast
<
size_t
>
(
lod_tensor
.
dims
()[
0
]));
// batch_lods[2] is the sort order for the input LoDTensor.
...
...
@@ -128,7 +128,7 @@ class LoDTensor2BatchFunctor {
size_t
*
batch_starts
=
batch_lods
[
0
].
data
();
size_t
*
seq2batch_idx
=
batch_lods
[
1
].
data
();
batch_starts
[
0
]
=
0
;
for
(
int
n
=
0
;
n
<
num_batch
;
n
++
)
{
for
(
int
n
=
0
;
n
<
max_seqlen
;
n
++
)
{
auto
batch_id
=
static_cast
<
int
>
(
batch_starts
[
n
]);
for
(
size_t
i
=
0
;
i
<
seq_info
.
size
();
++
i
)
{
int
seq_len
=
seq_info
[
i
].
length
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录