Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
201c2bcf
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
201c2bcf
编写于
9月 23, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete redundant codes.
上级
6735585b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
18 addition
and
77 deletion
+18
-77
paddle/operators/cross_entropy_op.cu
paddle/operators/cross_entropy_op.cu
+10
-45
python/paddle/v2/framework/tests/test_cross_entropy_op.py
python/paddle/v2/framework/tests/test_cross_entropy_op.py
+8
-32
未找到文件。
paddle/operators/cross_entropy_op.cu
浏览文件 @
201c2bcf
...
...
@@ -42,10 +42,9 @@ __device__ __forceinline__ T sum_single_warp(T val) {
return
val
;
}
// This kernel is called when the class number is less than or equal to 512.
template
<
typename
T
>
__global__
void
SoftCrossEntropyKernel
1
(
T
*
Y
,
const
T
*
X
,
const
T
*
label
,
const
int
class_num
)
{
__global__
void
SoftCrossEntropyKernel
(
T
*
Y
,
const
T
*
X
,
const
T
*
label
,
const
int
class_num
)
{
int
tid
=
threadIdx
.
x
;
extern
__shared__
T
d_sum
[];
d_sum
[
tid
]
=
0
;
...
...
@@ -69,33 +68,6 @@ __global__ void SoftCrossEntropyKernel1(T* Y, const T* X, const T* label,
if
(
tid
==
0
)
Y
[
blockIdx
.
x
]
=
-
val
;
}
// This kernel is called when the class number is larger than 512.
template
<
typename
T
,
int
BlockSize
>
__global__
void
SoftCrossEntropyKernel2
(
T
*
Y
,
const
T
*
X
,
const
T
*
label
,
const
int
class_num
)
{
int
tid
=
threadIdx
.
x
;
__shared__
T
d_sum
[
BlockSize
];
int
next_idx
=
blockIdx
.
x
*
class_num
+
tid
;
d_sum
[
tid
]
=
0
;
int
cur_idx
=
tid
;
while
(
cur_idx
<
class_num
)
{
d_sum
[
tid
]
+=
TolerableValue
<
T
>
()(
std
::
log
(
X
[
next_idx
]))
*
label
[
next_idx
];
next_idx
+=
BlockSize
;
cur_idx
+=
BlockSize
;
}
__syncthreads
();
for
(
unsigned
int
stride
=
BlockSize
>>
1
;
stride
>=
32
;
stride
>>=
1
)
{
if
(
tid
<
stride
)
d_sum
[
tid
]
+=
d_sum
[
tid
+
stride
];
__syncthreads
();
}
T
val
=
d_sum
[
tid
];
val
=
sum_single_warp
<
T
>
(
val
);
if
(
tid
==
0
)
Y
[
blockIdx
.
x
]
=
-
val
;
}
// TODO(qingqing): make zero setting a common function.
template
<
typename
T
>
__global__
void
zero
(
T
*
X
,
const
int
N
)
{
...
...
@@ -146,26 +118,19 @@ class CrossEntropyOpCUDAKernel : public framework::OpKernel {
int
batch_size
=
x
->
dims
()[
0
];
int
class_num
=
x
->
dims
()[
1
];
int
block
=
512
;
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
if
(
class_num
>
512
)
{
SoftCrossEntropyKernel2
<
T
,
512
><<<
batch_size
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
y_data
,
x_data
,
label_data
,
class_num
);
}
else
{
int
block_size
=
pow
(
2
,
int
(
std
::
log2
(
class_num
)));
SoftCrossEntropyKernel1
<
T
><<<
batch_size
,
block_size
,
block_size
*
sizeof
(
T
),
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
y_data
,
x_data
,
label_data
,
class_num
);
}
int
block
=
class_num
>
512
?
512
:
pow
(
2
,
int
(
std
::
log2
(
class_num
)));
SoftCrossEntropyKernel
<
T
><<<
batch_size
,
block
,
block
*
sizeof
(
T
),
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
y_data
,
x_data
,
label_data
,
class_num
);
}
else
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
int
block
=
512
;
int
grid
=
(
batch_size
+
block
-
1
)
/
block
;
CrossEntropyKernel
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
...
...
python/paddle/v2/framework/tests/test_cross_entropy_op.py
浏览文件 @
201c2bcf
...
...
@@ -4,19 +4,21 @@ from op_test import OpTest
class
TestCrossEntropyOp1
(
OpTest
):
"""Test
standard cross-entropy, with index representation of
labels.
"""Test
cross-entropy with discrete one-hot
labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
30
class_num
=
10
X
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
=
np
.
random
.
randint
(
0
,
class_num
,
(
batch_size
,
1
),
dtype
=
"int32"
)
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
X
[
i
][
label
[
i
][
0
]])]
for
i
in
range
(
X
.
shape
[
0
])],
dtype
=
"float32"
)
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
False
}
...
...
@@ -29,14 +31,14 @@ class TestCrossEntropyOp1(OpTest):
class
TestCrossEntropyOp2
(
OpTest
):
"""Test
soft-label cross-entropy, with vecte
rized soft labels.
"""Test
cross-entropy with vecto
rized soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
5
# this setting tests threads in more than one wrap.
class_num
=
37
X
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
=
np
.
random
.
uniform
(
0.1
,
1.0
,
...
...
@@ -44,6 +46,7 @@ class TestCrossEntropyOp2(OpTest):
label
/=
label
.
sum
(
axis
=
1
,
keepdims
=
True
)
cross_entropy
=
(
-
label
*
np
.
log
(
X
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
...
...
@@ -56,15 +59,14 @@ class TestCrossEntropyOp2(OpTest):
class
TestCrossEntropyOp3
(
OpTest
):
"""Test one-hot cross-entropy, with vecterized one-hot representation of
labels.
"""Test cross-entropy with vectorized one-hot representation of labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
5
# this setting tests all threads in one wrap.
class_num
=
17
X
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label_index
=
np
.
random
.
randint
(
...
...
@@ -76,33 +78,7 @@ class TestCrossEntropyOp3(OpTest):
dtype
=
"float32"
)
cross_entropy2
=
(
-
label
*
np
.
log
(
X
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Y"
,
max_relative_error
=
0.05
)
class
TestCrossEntropyOp4
(
OpTest
):
"""Test soft-label cross-entropy.
This unittest tests the gpu kernel for layer size excesses 512.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
2
class_num
=
517
X
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
/=
label
.
sum
(
axis
=
1
,
keepdims
=
True
)
cross_entropy
=
(
-
label
*
np
.
log
(
X
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录