Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1f132953
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1f132953
编写于
7月 04, 2022
作者:
N
nihao
提交者:
GitHub
7月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
mobileone block k>1 bugfix (#6342)
上级
d409ec06
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
31 addition
and
29 deletion
+31
-29
ppdet/modeling/backbones/mobileone.py
ppdet/modeling/backbones/mobileone.py
+31
-29
未找到文件。
ppdet/modeling/backbones/mobileone.py
浏览文件 @
1f132953
...
...
@@ -22,7 +22,7 @@ import paddle
import
paddle.nn
as
nn
from
paddle
import
ParamAttr
from
paddle.regularizer
import
L2Decay
from
paddle.nn.initializer
import
Normal
from
paddle.nn.initializer
import
Normal
,
Constant
from
ppdet.modeling.ops
import
get_act_fn
from
ppdet.modeling.layers
import
ConvNormLayer
...
...
@@ -57,9 +57,7 @@ class MobileOneBlock(nn.Layer):
self
.
depth_conv
=
nn
.
LayerList
()
self
.
point_conv
=
nn
.
LayerList
()
for
i
in
range
(
self
.
k
):
if
i
>
0
:
stride
=
1
for
_
in
range
(
self
.
k
):
self
.
depth_conv
.
append
(
ConvNormLayer
(
ch_in
,
...
...
@@ -112,7 +110,8 @@ class MobileOneBlock(nn.Layer):
self
.
rbr_identity_st2
=
nn
.
BatchNorm2D
(
num_features
=
ch_out
,
weight_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.0
)),
bias_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.0
)))
bias_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.0
)))
if
ch_in
==
ch_out
and
self
.
stride
==
1
else
None
self
.
act
=
get_act_fn
(
act
)
if
act
is
None
or
isinstance
(
act
,
(
str
,
dict
))
else
act
...
...
@@ -125,9 +124,10 @@ class MobileOneBlock(nn.Layer):
else
:
id_out_st1
=
self
.
rbr_identity_st1
(
x
)
x1_1
=
x
.
clone
()
x1_1
=
0
for
i
in
range
(
self
.
k
):
x1_1
=
self
.
depth_conv
[
i
](
x1_1
)
x1_1
+=
self
.
depth_conv
[
i
](
x
)
x1_2
=
self
.
rbr_1x1
(
x
)
x1
=
self
.
act
(
x1_1
+
x1_2
+
id_out_st1
)
...
...
@@ -136,9 +136,9 @@ class MobileOneBlock(nn.Layer):
else
:
id_out_st2
=
self
.
rbr_identity_st2
(
x1
)
x2_1
=
x1
.
clone
()
x2_1
=
0
for
i
in
range
(
self
.
k
):
x2_1
=
self
.
point_conv
[
i
](
x2_
1
)
x2_1
+=
self
.
point_conv
[
i
](
x
1
)
y
=
self
.
act
(
x2_1
+
id_out_st2
)
return
y
...
...
@@ -151,7 +151,9 @@ class MobileOneBlock(nn.Layer):
kernel_size
=
self
.
kernel_size
,
stride
=
self
.
stride
,
padding
=
self
.
padding
,
groups
=
self
.
ch_in
)
groups
=
self
.
ch_in
,
bias_attr
=
ParamAttr
(
initializer
=
Constant
(
value
=
0.
),
learning_rate
=
1.
))
if
not
hasattr
(
self
,
'conv2'
):
self
.
conv2
=
nn
.
Conv2D
(
in_channels
=
self
.
ch_in
,
...
...
@@ -159,7 +161,9 @@ class MobileOneBlock(nn.Layer):
kernel_size
=
1
,
stride
=
1
,
padding
=
'SAME'
,
groups
=
1
)
groups
=
1
,
bias_attr
=
ParamAttr
(
initializer
=
Constant
(
value
=
0.
),
learning_rate
=
1.
))
conv1_kernel
,
conv1_bias
,
conv2_kernel
,
conv2_bias
=
self
.
get_equivalent_kernel_bias
(
)
...
...
@@ -211,26 +215,24 @@ class MobileOneBlock(nn.Layer):
return
0
,
0
if
isinstance
(
branch
,
nn
.
LayerList
):
kernel
=
0
running_mean
=
0
running_var
=
0
gamma
=
0
beta
=
0
eps
=
0
fused_kernels
=
[]
fused_bias
=
[]
for
block
in
branch
:
kernel
+=
block
.
conv
.
weight
running_mean
+=
block
.
norm
.
_mean
running_var
+=
block
.
norm
.
_variance
gamma
+=
block
.
norm
.
weight
beta
+=
block
.
norm
.
bias
eps
+=
block
.
norm
.
_epsilon
kernel
=
block
.
conv
.
weight
running_mean
=
block
.
norm
.
_mean
running_var
=
block
.
norm
.
_variance
gamma
=
block
.
norm
.
weight
beta
=
block
.
norm
.
bias
eps
=
block
.
norm
.
_epsilon
std
=
(
running_var
+
eps
).
sqrt
()
t
=
(
gamma
/
std
).
reshape
((
-
1
,
1
,
1
,
1
))
fused_kernels
.
append
(
kernel
*
t
)
fused_bias
.
append
(
beta
-
running_mean
*
gamma
/
std
)
return
sum
(
fused_kernels
),
sum
(
fused_bias
)
kernel
/=
len
(
branch
)
running_mean
/=
len
(
branch
)
running_var
/=
len
(
branch
)
gamma
/=
len
(
branch
)
beta
/=
len
(
branch
)
eps
/=
len
(
branch
)
elif
isinstance
(
branch
,
ConvNormLayer
):
kernel
=
branch
.
conv
.
weight
running_mean
=
branch
.
norm
.
_mean
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录