Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1ca2846e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1ca2846e
编写于
1月 17, 2017
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Pass unit test for CpuMatrix::mul(CpuMatrix, CpuSparseMatrix)
and GpuMatrix::mul(CpuMatrix, GpuSparseMatrix)
上级
2df8eec5
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
198 addition
and
27 deletion
+198
-27
paddle/function/BufferArg.cpp
paddle/function/BufferArg.cpp
+10
-2
paddle/function/BufferArg.h
paddle/function/BufferArg.h
+10
-17
paddle/function/MulOp.cpp
paddle/function/MulOp.cpp
+42
-8
paddle/function/MulOp.h
paddle/function/MulOp.h
+2
-0
paddle/function/MulOpTest.cpp
paddle/function/MulOpTest.cpp
+134
-0
未找到文件。
paddle/function/BufferArg.cpp
浏览文件 @
1ca2846e
...
...
@@ -32,14 +32,22 @@ const SparseMatrixArg& BufferArg::sparse() const {
SparseMatrixArg
::
SparseMatrixArg
(
const
CpuSparseMatrix
&
sparse
,
ArgType
argType
)
:
BufferArg
(
sparse
,
argType
),
row_
(
reinterpret_cast
<
void
*>
(
sparse
.
getRows
()),
VALUE_TYPE_INT32
),
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
)
{
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
),
/// todo(tianbing), make sure how to get NNZ
nnz_
(
sparse
.
getElementCnt
()),
format_
(
sparse
.
getFormat
()),
type_
(
sparse
.
getValueType
())
{
bufferType_
=
TENSOR_SPARSE
;
}
SparseMatrixArg
::
SparseMatrixArg
(
const
GpuSparseMatrix
&
sparse
,
ArgType
argType
)
:
BufferArg
(
sparse
,
argType
),
row_
(
reinterpret_cast
<
void
*>
(
sparse
.
getRows
()),
VALUE_TYPE_INT32
),
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
)
{
col_
(
reinterpret_cast
<
void
*>
(
sparse
.
getCols
()),
VALUE_TYPE_INT32
),
/// todo(tianbing), make sure how to get NNZ
nnz_
(
sparse
.
getElementCnt
()),
format_
(
sparse
.
getFormat
()),
type_
(
sparse
.
getValueType
())
{
bufferType_
=
TENSOR_SPARSE
;
}
...
...
paddle/function/BufferArg.h
浏览文件 @
1ca2846e
...
...
@@ -30,13 +30,6 @@ enum BufferType {
TENSOR_SPARSE
=
4
};
enum
SparseDataType
{
SPARSE_NO_VALUE
=
0
,
// do not need value pointer, all values are 1
SPARSE_FLOAT_VALUE
=
1
};
enum
SparseDataFormat
{
SPARSE_CSR_FORMAT
=
0
,
SPARSE_CSC_FORMAT
=
1
};
class
BufferArg
;
class
SequenceArg
;
class
SparseMatrixArg
;
...
...
@@ -272,8 +265,8 @@ public:
const
BufferArg
&
row
,
const
BufferArg
&
col
,
size_t
nnz
,
Sparse
Data
Format
format
,
Sparse
Data
Type
type
,
SparseFormat
format
,
Sparse
Value
Type
type
,
ArgType
argType
=
UNSPECIFIED
)
:
BufferArg
(
buf
,
valueType
,
shape
,
argType
),
row_
(
row
),
...
...
@@ -286,9 +279,9 @@ public:
CHECK_EQ
(
shape_
.
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
row_
.
shape
().
ndims
(),
(
size_t
)
1
);
CHECK_EQ
(
col_
.
shape
().
ndims
(),
(
size_t
)
1
);
if
(
format
==
SPARSE_CSR
_FORMAT
)
{
if
(
format
==
SPARSE_CSR
)
{
CHECK_EQ
(
nnz
,
col
.
shape
()[
0
]);
}
else
if
(
format
==
SPARSE_CSC
_FORMAT
)
{
}
else
if
(
format
==
SPARSE_CSC
)
{
CHECK_EQ
(
nnz
,
row
.
shape
()[
0
]);
}
}
...
...
@@ -310,8 +303,8 @@ public:
shape_
[
0
],
shape_
[
1
],
nnz_
,
static_cast
<
SparseValueType
>
(
type_
)
,
static_cast
<
SparseFormat
>
(
format_
)
,
type_
,
format_
,
trans_
);
}
...
...
@@ -323,16 +316,16 @@ public:
size_t
nnz
()
const
{
return
nnz_
;
}
Sparse
Data
Format
dataFormat
()
const
{
return
format_
;
}
SparseFormat
dataFormat
()
const
{
return
format_
;
}
Sparse
Data
Type
dataType
()
const
{
return
type_
;
}
Sparse
Value
Type
dataType
()
const
{
return
type_
;
}
private:
BufferArg
row_
;
BufferArg
col_
;
size_t
nnz_
;
Sparse
Data
Format
format_
;
Sparse
Data
Type
type_
;
SparseFormat
format_
;
Sparse
Value
Type
type_
;
};
}
// namespace paddle
paddle/function/MulOp.cpp
浏览文件 @
1ca2846e
...
...
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "MulOp.h"
/// todo(tianbing), delete it
#include <iostream>
#include "paddle/math/MathFunctions.h"
#include "paddle/math/SIMDFunctions.h"
#include "paddle/utils/ThreadLocal.h"
...
...
@@ -496,16 +498,48 @@ public:
CHECK_EQ
(
outputs
[
0
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
auto
in1_mat
=
inputs
[
0
].
matrix
<
Device
>
();
if
(
inputs
[
0
].
isSparseArg
())
{
in1_mat
=
inputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
();
/// todo(tianbing), support SparseMatrixArg for out_mat
auto
out_mat
=
outputs
[
0
].
matrix
<
Device
>
();
LOG
(
INFO
)
<<
"out_mat:"
;
out_mat
.
print
(
std
::
cout
);
if
(
!
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
())
{
LOG
(
INFO
)
<<
"in1_mat:"
;
inputs
[
0
].
matrix
<
Device
>
().
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"in2_mat:"
;
inputs
[
1
].
matrix
<
Device
>
().
print
(
std
::
cout
);
MulOp
<
Device
>
(
out_mat
,
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
alpha_
,
beta_
);
return
;
}
auto
in2_mat
=
inputs
[
1
].
matrix
<
Device
>
();
if
(
inputs
[
1
].
isSparseArg
())
{
in2_mat
=
inputs
[
1
].
sparse
().
SparseMatrix
<
Device
>
();
if
(
!
inputs
[
0
].
isSparseArg
()
&&
inputs
[
1
].
isSparseArg
())
{
LOG
(
INFO
)
<<
"in1_mat:"
;
inputs
[
0
].
matrix
<
Device
>
().
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"in2_mat:"
;
inputs
[
1
].
sparse
().
SparseMatrix
<
Device
>
().
print
(
std
::
cout
);
MulOp
<
Device
>
(
out_mat
,
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
sparse
().
SparseMatrix
<
Device
>
(),
alpha_
,
beta_
);
return
;
}
if
(
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
())
{
LOG
(
INFO
)
<<
"in1_mat:"
;
inputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
().
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"in2_mat:"
;
inputs
[
1
].
matrix
<
Device
>
().
print
(
std
::
cout
);
MulOp
<
Device
>
(
out_mat
,
inputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
alpha_
,
beta_
);
return
;
}
auto
out_mat
=
outputs
[
0
].
matrix
<
Device
>
();
MulOp
<
Device
>
(
out_mat
,
in1_mat
,
in2_mat
,
alpha_
,
beta_
);
}
private:
...
...
paddle/function/MulOp.h
浏览文件 @
1ca2846e
...
...
@@ -15,6 +15,8 @@ limitations under the License. */
#pragma once
#include "Function.h"
/// todo(tianbing), delete
#include <iostream>
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
...
...
paddle/function/MulOpTest.cpp
浏览文件 @
1ca2846e
...
...
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
/// todo(tianbing), delete
#include <iostream>
#include "FunctionTest.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
...
...
@@ -72,6 +74,7 @@ void testMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
}
TEST
(
Matrix
,
mul
)
{
LOG
(
INFO
)
<<
"test for dense = dense * dense matrix"
;
for
(
auto
transa
:
{
false
,
true
})
{
for
(
auto
transb
:
{
false
,
true
})
{
for
(
auto
dimM
:
{
1
,
10
,
100
})
{
...
...
@@ -93,3 +96,134 @@ TEST(Matrix, mul) {
}
}
}
struct
MatrixPara
{
size_t
height
;
size_t
width
;
bool
trans
;
bool
sparse
;
size_t
nnz
;
SparseFormat
format
;
};
/**
* C += A * B, A, C dense, B sparse
*/
void
testDSparseDMatrix
()
{
real
alpha
=
1.0
;
real
beta
=
1.0
;
const
auto
cpuFunc
=
FunctionBase
::
funcRegistrar_
.
createByType
(
"MulOp-CPU"
);
cpuFunc
->
init
(
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
const
auto
gpuFunc
=
FunctionBase
::
funcRegistrar_
.
createByType
(
"MulOp-GPU"
);
gpuFunc
->
init
(
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
constexpr
size_t
dimM
=
2
;
constexpr
size_t
dimN
=
2
;
constexpr
size_t
dimK
=
3
;
constexpr
size_t
NNZ
=
3
;
constexpr
SparseFormat
FORMAT
=
SPARSE_CSC
;
MatrixPara
paraA
{
dimM
,
dimK
,
/*trans*/
false
,
/*sparse*/
false
,
NNZ
,
FORMAT
};
MatrixPara
paraB
{
dimK
,
dimN
,
/*trans*/
false
,
/*sparse*/
true
,
NNZ
,
FORMAT
};
MatrixPara
paraC
{
dimM
,
dimN
,
/*trans*/
false
,
/*sparse*/
false
,
NNZ
,
FORMAT
};
auto
cpuMatrixA
=
Matrix
::
create
(
paraA
.
height
,
paraA
.
width
,
paraA
.
trans
,
false
);
auto
gpuMatrixA
=
Matrix
::
create
(
paraA
.
height
,
paraA
.
width
,
paraA
.
trans
,
true
);
auto
cpuDenseA
=
Matrix
::
create
(
paraA
.
height
,
paraA
.
width
,
paraA
.
trans
,
false
);
CpuSparseMatrix
cpuMatrixB
(
paraB
.
height
,
paraB
.
width
,
paraB
.
nnz
,
FLOAT_VALUE
,
paraB
.
format
,
paraB
.
trans
);
GpuSparseMatrix
gpuMatrixB
(
paraB
.
height
,
paraB
.
width
,
paraB
.
nnz
,
FLOAT_VALUE
,
paraB
.
format
,
paraB
.
trans
);
auto
cpuDenseB
=
Matrix
::
create
(
paraB
.
height
,
paraB
.
width
,
paraB
.
trans
,
false
);
auto
cpuMatrixC
=
Matrix
::
create
(
paraC
.
height
,
paraC
.
width
,
paraC
.
trans
,
false
);
auto
gpuMatrixC
=
Matrix
::
create
(
paraC
.
height
,
paraC
.
width
,
paraC
.
trans
,
true
);
auto
cpuDenseC
=
Matrix
::
create
(
paraC
.
height
,
paraC
.
width
,
paraC
.
trans
,
false
);
auto
gpuMatrixC_d2h
=
Matrix
::
create
(
paraC
.
height
,
paraC
.
width
,
paraC
.
trans
,
false
);
/*matrix init*/
hl_stream_t
stream
(
HPPL_STREAM_1
);
cpuMatrixA
->
randomizeUniform
();
cpuMatrixB
.
randomizeUniform
();
cpuMatrixC
->
randomizeUniform
();
gpuMatrixA
->
copyFrom
(
*
cpuMatrixA
,
stream
);
gpuMatrixB
.
copyFrom
(
cpuMatrixB
,
stream
);
gpuMatrixC
->
copyFrom
(
*
cpuMatrixC
,
stream
);
cpuDenseA
->
copyFrom
(
*
cpuMatrixA
);
cpuDenseB
->
copyFrom
(
cpuMatrixB
);
cpuDenseC
->
copyFrom
(
*
cpuMatrixC
);
hl_stream_synchronize
(
stream
);
LOG
(
INFO
)
<<
"cpuMatrixA: "
;
cpuMatrixA
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"cpuMatrixB: "
;
(
&
cpuMatrixB
)
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"cpuMatrixC: "
;
cpuMatrixC
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"cpuDenseA: "
;
cpuDenseA
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"cpuDenseB: "
;
cpuDenseB
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"cpuDenseC: "
;
cpuDenseC
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"gpuMatrixA: "
;
gpuMatrixA
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"gpuMatrixB: "
;
(
&
gpuMatrixB
)
->
print
(
std
::
cout
);
LOG
(
INFO
)
<<
"gpuMatrixC: "
;
gpuMatrixC
->
print
(
std
::
cout
);
/*matrix mul*/
BufferArgs
cpuInputs
;
BufferArgs
cpuOutputs
;
cpuInputs
.
addArg
(
*
cpuMatrixA
);
cpuInputs
.
addArg
(
cpuMatrixB
);
cpuOutputs
.
addArg
(
*
cpuMatrixC
,
ADD_TO
);
cpuFunc
->
calc
(
cpuInputs
,
cpuOutputs
);
BufferArgs
gpuInputs
;
BufferArgs
gpuOutputs
;
gpuInputs
.
addArg
(
*
gpuMatrixA
);
gpuInputs
.
addArg
(
gpuMatrixB
);
gpuOutputs
.
addArg
(
*
gpuMatrixC
,
ADD_TO
);
gpuFunc
->
calc
(
gpuInputs
,
gpuOutputs
);
BufferArgs
denseInputs
;
BufferArgs
denseOutputs
;
denseInputs
.
addArg
(
*
cpuDenseA
);
denseInputs
.
addArg
(
*
cpuDenseB
);
denseOutputs
.
addArg
(
*
cpuDenseC
,
ADD_TO
);
cpuFunc
->
calc
(
denseInputs
,
denseOutputs
);
gpuMatrixC_d2h
->
copyFrom
(
*
gpuMatrixC
,
stream
);
hl_stream_synchronize
(
stream
);
/*check result*/
// autotest::TensorCheckErr(*cpuMatrixC, *gpuMatrixC);
checkMatrixEqual
(
cpuMatrixC
,
cpuDenseC
);
checkMatrixEqual
(
cpuMatrixC
,
gpuMatrixC_d2h
);
}
TEST
(
Matrix
,
SparseMatrixMul
)
{
LOG
(
INFO
)
<<
"test for dense = dense * sparse matrix"
;
testDSparseDMatrix
();
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录