Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1c81d579
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
1c81d579
编写于
9月 09, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add huber loss operator.
上级
0be34949
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
309 addition
and
0 deletion
+309
-0
paddle/operators/huber_loss_op.cc
paddle/operators/huber_loss_op.cc
+108
-0
paddle/operators/huber_loss_op.cu
paddle/operators/huber_loss_op.cu
+23
-0
paddle/operators/huber_loss_op.h
paddle/operators/huber_loss_op.h
+120
-0
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+1
-0
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/test_huber_loss_op.py
python/paddle/v2/framework/tests/test_huber_loss_op.py
+56
-0
未找到文件。
paddle/operators/huber_loss_op.cc
0 → 100644
浏览文件 @
1c81d579
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/huber_loss_op.h"
namespace
paddle
{
namespace
operators
{
class
HuberLossOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"X must be initialized."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Y must be initialized."
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
PADDLE_ENFORCE_EQ
(
x
->
dims
(),
y
->
dims
(),
"Dimensions of X and Y must be the same."
);
// we constraint shape of X to (N, 1), may expand to (N, x, ...) if needed
PADDLE_ENFORCE_EQ
(
framework
::
arity
(
x
->
dims
()),
2
,
"Tensor rank of X must be 2."
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
1
],
1
,
"Second dimension of X must be 1."
);
ctx
.
Output
<
Tensor
>
(
"residual"
)
->
Resize
(
x
->
dims
());
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
x
->
dims
()[
0
],
1
});
}
};
template
<
typename
AttrType
>
class
HuberLossOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
HuberLossOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input value of HuberLossOp."
);
AddInput
(
"Y"
,
"Target value of HuberLossOp."
);
AddOutput
(
"residual"
,
"Save residual value between Y and X. "
"Will be reused in backward."
)
.
AsIntermediate
();
AddOutput
(
"Out"
,
"Huber loss between input and target."
);
AddAttr
<
AttrType
>
(
"delta"
,
"Hyper parameter in huber loss."
);
AddComment
(
R"DOC(
Huber loss is a loss function used in robust regression. We constrain shape of
input to (N, 1). The formulation is:
L_delta(y, f(x)) = 0.5 * (y - f(x))^2 for |y - f(x)| <= delta,
delta * (|y - f(x)| - 0.5 * delta) otherwise.
)DOC"
);
}
};
class
HuberLossGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
residual
=
ctx
.
Input
<
Tensor
>
(
"residual"
);
auto
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_NOT_NULL
(
x
,
"Input X must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
y
,
"Target Y must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
residual
,
"Residual value must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
out_grad
,
"Out gradient must not be null."
);
PADDLE_ENFORCE_EQ
(
residual
->
dims
(),
x
->
dims
(),
"Dimension of X and residual value must be the same."
);
PADDLE_ENFORCE_EQ
(
out_grad
->
dims
(),
x
->
dims
(),
"Dimension of Out gradient and X must be the same (N*1)."
);
if
(
x_grad
)
x_grad
->
Resize
(
x
->
dims
());
if
(
y_grad
)
y_grad
->
Resize
(
y
->
dims
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
huber_loss
,
ops
::
HuberLossOp
,
ops
::
HuberLossOpMaker
<
float
>
,
huber_loss_grad
,
ops
::
HuberLossGradOp
);
REGISTER_OP_CPU_KERNEL
(
huber_loss
,
ops
::
HuberLossKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
huber_loss_grad
,
ops
::
HuberLossGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/huber_loss_op.cu
0 → 100644
浏览文件 @
1c81d579
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/huber_loss_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
huber_loss
,
ops
::
HuberLossKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
huber_loss_grad
,
ops
::
HuberLossGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/huber_loss_op.h
0 → 100644
浏览文件 @
1c81d579
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
struct
HuberLossForward
{
HOSTDEVICE
HuberLossForward
(
const
T
&
delta
)
:
delta
(
delta
)
{}
HOSTDEVICE
T
operator
()(
const
T
&
val
)
const
{
T
abs_val
=
std
::
abs
(
val
);
if
(
abs_val
<=
delta
)
{
return
0.5
*
val
*
val
;
}
else
{
return
delta
*
(
abs_val
-
0.5
*
delta
);
}
}
T
delta
;
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
HuberLossKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out0
=
context
.
Output
<
Tensor
>
(
"residual"
);
auto
*
out1
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
delta
=
static_cast
<
T
>
(
context
.
op
().
Attr
<
AttrType
>
(
"delta"
));
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
in0
);
auto
y
=
EigenVector
<
T
>::
Flatten
(
*
in1
);
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
residual
=
EigenVector
<
T
>::
Flatten
(
*
out0
);
residual
.
device
(
place
)
=
y
-
x
;
out1
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
loss
=
EigenVector
<
T
>::
Flatten
(
*
out1
);
loss
.
device
(
place
)
=
residual
.
unaryExpr
(
HuberLossForward
<
T
>
(
delta
));
}
};
template
<
typename
T
>
struct
HuberLossBackward
{
HOSTDEVICE
HuberLossBackward
(
const
T
&
delta
,
bool
is_x
)
:
is_x
(
is_x
),
delta
(
delta
)
{}
HOSTDEVICE
T
operator
()(
const
T
&
val
)
const
{
T
sign
=
is_x
?
-
1.0
:
1.0
;
T
abs_val
=
std
::
abs
(
val
);
if
(
abs_val
<=
delta
)
{
return
sign
*
val
;
}
else
{
if
(
val
>
0
)
{
return
sign
*
delta
;
}
else
{
return
-
1
*
sign
*
delta
;
}
}
}
bool
is_x
;
T
delta
;
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
HuberLossGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"residual"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out0
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out1
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
delta
=
static_cast
<
T
>
(
context
.
op
().
Attr
<
AttrType
>
(
"delta"
));
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
residual
=
EigenVector
<
T
>::
Flatten
(
*
in0
);
auto
out_grad
=
EigenVector
<
T
>::
Flatten
(
*
in1
);
if
(
out0
)
{
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_grad
=
EigenVector
<
T
>::
Flatten
(
*
out0
);
x_grad
.
device
(
place
)
=
out_grad
*
residual
.
unaryExpr
(
HuberLossBackward
<
T
>
(
delta
,
true
));
}
if
(
out1
)
{
out1
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
y_grad
=
EigenVector
<
T
>::
Flatten
(
*
out1
);
y_grad
.
device
(
place
)
=
out_grad
*
residual
.
unaryExpr
(
HuberLossBackward
<
T
>
(
delta
,
false
));
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/pybind/pybind.cc
浏览文件 @
1c81d579
...
...
@@ -51,6 +51,7 @@ USE_CPU_ONLY_OP(gather);
USE_CPU_ONLY_OP
(
scatter
);
USE_OP
(
top_k
);
USE_OP
(
squared_l2_distance
);
USE_OP
(
huber_loss
);
namespace
paddle
{
namespace
framework
{
...
...
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
1c81d579
...
...
@@ -35,3 +35,4 @@ py_test(test_lookup_table SRCS test_lookup_table.py)
py_test
(
test_scale_and_identity_op SRCS test_scale_and_identity_op.py
)
py_test
(
mnist SRCS mnist.py
)
py_test
(
test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py
)
py_test
(
test_huber_loss_op SRCS test_huber_loss_op.py
)
python/paddle/v2/framework/tests/test_huber_loss_op.py
0 → 100644
浏览文件 @
1c81d579
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
from
paddle.v2.framework.op
import
Operator
import
numpy
as
np
def
huber_loss_forward
(
val
,
delta
):
abs_val
=
abs
(
val
)
if
abs_val
<=
delta
:
return
0.5
*
val
*
val
else
:
return
delta
*
(
abs_val
-
0.5
*
delta
)
class
TestHuberLossOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
'huber_loss'
samples_num
=
64
delta
=
1.0
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0
,
1.
,
(
samples_num
,
1
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
uniform
(
0
,
1.
,
(
samples_num
,
1
)).
astype
(
'float32'
),
}
residual
=
self
.
inputs
[
'Y'
]
-
self
.
inputs
[
'X'
]
loss
=
np
.
vectorize
(
huber_loss_forward
)(
residual
,
delta
)
self
.
attrs
=
{
'delta'
:
delta
}
self
.
outputs
=
{
'residual'
:
residual
,
'Out'
:
loss
.
reshape
((
samples_num
,
1
))
}
class
TestHuberLossGradOp
(
GradientChecker
):
def
test_huber_loss
(
self
):
samples_num
=
10
delta
=
1.0
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
(
samples_num
,
1
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
uniform
(
-
1
,
1
,
(
samples_num
,
1
)).
astype
(
'float32'
)
}
op
=
Operator
(
"huber_loss"
,
X
=
'X'
,
Y
=
'Y'
,
residual
=
'residual'
,
delta
=
delta
,
Out
=
'Out'
)
self
.
compare_grad
(
op
,
inputs
,
no_grad_set
=
set
([
'residual'
]))
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录