Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1bd909c1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1bd909c1
编写于
12月 10, 2019
作者:
W
wangguanzhong
提交者:
GitHub
12月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix im_info (#95)
上级
02700af9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
32 addition
and
30 deletion
+32
-30
ppdet/data/transform/operators.py
ppdet/data/transform/operators.py
+32
-30
未找到文件。
ppdet/data/transform/operators.py
浏览文件 @
1bd909c1
...
...
@@ -287,8 +287,8 @@ class ResizeImage(BaseOperator):
im_scale_x
=
im_scale
im_scale_y
=
im_scale
resize_w
=
np
.
round
(
im_scale_x
*
float
(
im_shape
[
1
])
)
resize_h
=
np
.
round
(
im_scale_y
*
float
(
im_shape
[
0
])
)
resize_w
=
im_scale_x
*
float
(
im_shape
[
1
]
)
resize_h
=
im_scale_y
*
float
(
im_shape
[
0
]
)
im_info
=
[
resize_h
,
resize_w
,
im_scale
]
if
'im_info'
in
sample
and
sample
[
'im_info'
][
2
]
!=
1.
:
sample
[
'im_info'
]
=
np
.
append
(
...
...
@@ -311,8 +311,12 @@ class ResizeImage(BaseOperator):
fy
=
im_scale_y
,
interpolation
=
self
.
interp
)
else
:
if
self
.
max_size
!=
0
:
raise
TypeError
(
'If you set max_size to cap the maximum size of image,'
'please set use_cv2 to True to resize the image.'
)
im
=
Image
.
fromarray
(
im
)
im
=
im
.
resize
((
resize_w
,
resize_h
),
self
.
interp
)
im
=
im
.
resize
((
int
(
resize_w
),
int
(
resize_h
)
),
self
.
interp
)
im
=
np
.
array
(
im
)
sample
[
'image'
]
=
im
...
...
@@ -1009,9 +1013,8 @@ class Resize(BaseOperator):
'random' (for randomized interpolation).
default to `cv2.INTER_LINEAR`.
"""
def
__init__
(
self
,
target_dim
=
[],
interp
=
cv2
.
INTER_LINEAR
):
def
__init__
(
self
,
target_dim
=
[],
interp
=
cv2
.
INTER_LINEAR
):
super
(
Resize
,
self
).
__init__
()
self
.
target_dim
=
target_dim
self
.
interp
=
interp
# 'random' for yolov3
...
...
@@ -1032,10 +1035,9 @@ class Resize(BaseOperator):
scale_x
=
dim
/
w
scale_y
=
dim
/
h
if
'gt_bbox'
in
sample
and
len
(
sample
[
'gt_bbox'
])
>
0
:
scale_array
=
np
.
array
([
scale_x
,
scale_y
]
*
2
,
dtype
=
np
.
float32
)
sample
[
'gt_bbox'
]
=
np
.
clip
(
sample
[
'gt_bbox'
]
*
scale_array
,
0
,
dim
-
1
)
scale_array
=
np
.
array
([
scale_x
,
scale_y
]
*
2
,
dtype
=
np
.
float32
)
sample
[
'gt_bbox'
]
=
np
.
clip
(
sample
[
'gt_bbox'
]
*
scale_array
,
0
,
dim
-
1
)
sample
[
'h'
]
=
resize_h
sample
[
'w'
]
=
resize_w
...
...
@@ -1060,6 +1062,7 @@ class ColorDistort(BaseOperator):
random_apply (bool): whether to apply in random (yolo) or fixed (SSD)
order.
"""
def
__init__
(
self
,
hue
=
[
-
18
,
18
,
0.5
],
saturation
=
[
0.5
,
1.5
,
0.5
],
...
...
@@ -1084,14 +1087,10 @@ class ColorDistort(BaseOperator):
delta
=
np
.
random
.
uniform
(
low
,
high
)
u
=
np
.
cos
(
delta
*
np
.
pi
)
w
=
np
.
sin
(
delta
*
np
.
pi
)
bt
=
np
.
array
([[
1.0
,
0.0
,
0.0
],
[
0.0
,
u
,
-
w
],
[
0.0
,
w
,
u
]])
tyiq
=
np
.
array
([[
0.299
,
0.587
,
0.114
],
[
0.596
,
-
0.274
,
-
0.321
],
bt
=
np
.
array
([[
1.0
,
0.0
,
0.0
],
[
0.0
,
u
,
-
w
],
[
0.0
,
w
,
u
]])
tyiq
=
np
.
array
([[
0.299
,
0.587
,
0.114
],
[
0.596
,
-
0.274
,
-
0.321
],
[
0.211
,
-
0.523
,
0.311
]])
ityiq
=
np
.
array
([[
1.0
,
0.956
,
0.621
],
[
1.0
,
-
0.272
,
-
0.647
],
ityiq
=
np
.
array
([[
1.0
,
0.956
,
0.621
],
[
1.0
,
-
0.272
,
-
0.647
],
[
1.0
,
-
1.107
,
1.705
]])
t
=
np
.
dot
(
np
.
dot
(
ityiq
,
bt
),
tyiq
).
T
img
=
np
.
dot
(
img
,
t
)
...
...
@@ -1135,10 +1134,8 @@ class ColorDistort(BaseOperator):
img
=
sample
[
'image'
]
if
self
.
random_apply
:
distortions
=
np
.
random
.
permutation
([
self
.
apply_brightness
,
self
.
apply_contrast
,
self
.
apply_saturation
,
self
.
apply_hue
self
.
apply_brightness
,
self
.
apply_contrast
,
self
.
apply_saturation
,
self
.
apply_hue
])
for
func
in
distortions
:
img
=
func
(
img
)
...
...
@@ -1167,6 +1164,7 @@ class NormalizePermute(BaseOperator):
mean (list): mean values in RGB order.
std (list): std values in RGB order.
"""
def
__init__
(
self
,
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.120
,
57.375
]):
...
...
@@ -1197,7 +1195,8 @@ class RandomExpand(BaseOperator):
prob (float): probability to expand.
fill_value (list): color value used to fill the canvas. in RGB order.
"""
def
__init__
(
self
,
ratio
=
4.
,
prob
=
0.5
,
fill_value
=
(
127.5
,)
*
3
):
def
__init__
(
self
,
ratio
=
4.
,
prob
=
0.5
,
fill_value
=
(
127.5
,
)
*
3
):
super
(
RandomExpand
,
self
).
__init__
()
assert
ratio
>
1.01
,
"expand ratio must be larger than 1.01"
self
.
ratio
=
ratio
...
...
@@ -1205,7 +1204,7 @@ class RandomExpand(BaseOperator):
assert
isinstance
(
fill_value
,
(
Number
,
Sequence
)),
\
"fill value must be either float or sequence"
if
isinstance
(
fill_value
,
Number
):
fill_value
=
(
fill_value
,)
*
3
fill_value
=
(
fill_value
,
)
*
3
if
not
isinstance
(
fill_value
,
tuple
):
fill_value
=
tuple
(
fill_value
)
self
.
fill_value
=
fill_value
...
...
@@ -1251,6 +1250,7 @@ class RandomCrop(BaseOperator):
allow_no_crop (bool): allow return without actually cropping them.
cover_all_box (bool): ensure all bboxes are covered in the final crop.
"""
def
__init__
(
self
,
aspect_ratio
=
[.
5
,
2.
],
thresholds
=
[.
0
,
.
1
,
.
3
,
.
5
,
.
7
,
.
9
],
...
...
@@ -1295,15 +1295,16 @@ class RandomCrop(BaseOperator):
for
i
in
range
(
self
.
num_attempts
):
scale
=
np
.
random
.
uniform
(
*
self
.
scaling
)
min_ar
,
max_ar
=
self
.
aspect_ratio
aspect_ratio
=
np
.
random
.
uniform
(
max
(
min_ar
,
scale
**
2
),
min
(
max_ar
,
scale
**-
2
))
aspect_ratio
=
np
.
random
.
uniform
(
max
(
min_ar
,
scale
**
2
),
min
(
max_ar
,
scale
**-
2
))
crop_h
=
int
(
h
*
scale
/
np
.
sqrt
(
aspect_ratio
))
crop_w
=
int
(
w
*
scale
*
np
.
sqrt
(
aspect_ratio
))
crop_y
=
np
.
random
.
randint
(
0
,
h
-
crop_h
)
crop_x
=
np
.
random
.
randint
(
0
,
w
-
crop_w
)
crop_box
=
[
crop_x
,
crop_y
,
crop_x
+
crop_w
,
crop_y
+
crop_h
]
iou
=
self
.
_iou_matrix
(
gt_bbox
,
np
.
array
([
crop_box
],
dtype
=
np
.
float32
))
iou
=
self
.
_iou_matrix
(
gt_bbox
,
np
.
array
(
[
crop_box
],
dtype
=
np
.
float32
))
if
iou
.
max
()
<
thresh
:
continue
...
...
@@ -1311,7 +1312,8 @@ class RandomCrop(BaseOperator):
continue
cropped_box
,
valid_ids
=
self
.
_crop_box_with_center_constraint
(
gt_bbox
,
np
.
array
(
crop_box
,
dtype
=
np
.
float32
))
gt_bbox
,
np
.
array
(
crop_box
,
dtype
=
np
.
float32
))
if
valid_ids
.
size
>
0
:
found
=
True
break
...
...
@@ -1349,8 +1351,8 @@ class RandomCrop(BaseOperator):
cropped_box
[:,
2
:]
-=
crop
[:
2
]
centers
=
(
box
[:,
:
2
]
+
box
[:,
2
:])
/
2
valid
=
np
.
logical_and
(
crop
[:
2
]
<=
centers
,
centers
<
crop
[
2
:]).
all
(
axis
=
1
)
valid
=
np
.
logical_and
(
crop
[:
2
]
<=
centers
,
centers
<
crop
[
2
:]).
all
(
axis
=
1
)
valid
=
np
.
logical_and
(
valid
,
(
cropped_box
[:,
:
2
]
<
cropped_box
[:,
2
:]).
all
(
axis
=
1
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录