Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1b6dcc2f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1b6dcc2f
编写于
11月 29, 2017
作者:
Y
Yu Yang
提交者:
GitHub
11月 29, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Feature/param attr (#5996)
* Make param_attr as a strong typed class Fix #5819
上级
399d3a2d
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
141 addition
and
159 deletion
+141
-159
python/paddle/v2/fluid/__init__.py
python/paddle/v2/fluid/__init__.py
+2
-1
python/paddle/v2/fluid/layer_helper.py
python/paddle/v2/fluid/layer_helper.py
+28
-43
python/paddle/v2/fluid/layers.py
python/paddle/v2/fluid/layers.py
+26
-88
python/paddle/v2/fluid/param_attr.py
python/paddle/v2/fluid/param_attr.py
+61
-0
python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
...n/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
+5
-5
python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py
...n/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py
+4
-7
python/paddle/v2/fluid/tests/book/test_recommender_system.py
python/paddle/v2/fluid/tests/book/test_recommender_system.py
+5
-5
python/paddle/v2/fluid/tests/book/test_word2vec.py
python/paddle/v2/fluid/tests/book/test_word2vec.py
+4
-4
python/paddle/v2/fluid/tests/test_layers.py
python/paddle/v2/fluid/tests/test_layers.py
+4
-4
python/paddle/v2/fluid/tests/test_recurrent_op.py
python/paddle/v2/fluid/tests/test_recurrent_op.py
+2
-2
未找到文件。
python/paddle/v2/fluid/__init__.py
浏览文件 @
1b6dcc2f
...
...
@@ -13,13 +13,14 @@ import nets
import
optimizer
import
backward
import
regularizer
from
param_attr
import
ParamAttr
from
core
import
LoDTensor
,
CPUPlace
,
GPUPlace
Tensor
=
LoDTensor
__all__
=
framework
.
__all__
+
executor
.
__all__
+
[
'io'
,
'initializer'
,
'layers'
,
'nets'
,
'optimizer'
,
'backward'
,
'regularizer'
,
'LoDTensor'
,
'CPUPlace'
,
'GPUPlace'
,
'Tensor'
'regularizer'
,
'LoDTensor'
,
'CPUPlace'
,
'GPUPlace'
,
'Tensor'
,
'ParamAttr'
]
...
...
python/paddle/v2/fluid/layer_helper.py
浏览文件 @
1b6dcc2f
import
copy
import
itertools
from
framework
import
Variable
,
default_main_program
,
default_startup_program
,
unique_name
,
dtype_is_floating
from
framework
import
Variable
,
default_main_program
,
default_startup_program
,
\
unique_name
,
dtype_is_floating
from
paddle.v2.fluid.initializer
import
Constant
,
Xavier
from
param_attr
import
ParamAttr
class
LayerHelper
(
object
):
...
...
@@ -59,31 +61,15 @@ class LayerHelper(object):
@
property
def
param_attr
(
self
):
default
=
{
'name'
:
None
}
actual
=
self
.
kwargs
.
get
(
'param_attr'
,
None
)
if
actual
is
None
:
actual
=
default
for
default_field
in
default
.
keys
():
if
default_field
not
in
actual
:
actual
[
default_field
]
=
default
[
default_field
]
return
actual
return
ParamAttr
.
to_attr
(
self
.
kwargs
.
get
(
'param_attr'
,
None
))
@
property
def
bias_attr
(
self
):
default
=
{
'name'
:
None
}
bias_attr
=
self
.
kwargs
.
get
(
'bias_attr'
,
None
)
if
bias_attr
is
None
:
bias_attr
=
default
if
isinstance
(
bias_attr
,
dict
):
for
default_field
in
default
.
keys
():
if
default_field
not
in
bias_attr
:
bias_attr
[
default_field
]
=
default
[
default_field
]
return
bias_attr
return
ParamAttr
.
to_attr
(
self
.
kwargs
.
get
(
'bias_attr'
,
None
))
def
multiple_param_attr
(
self
,
length
):
param_attr
=
self
.
param_attr
if
isinstance
(
param_attr
,
dict
):
if
isinstance
(
param_attr
,
ParamAttr
):
param_attr
=
[
param_attr
]
if
len
(
param_attr
)
!=
1
and
len
(
param_attr
)
!=
length
:
...
...
@@ -111,23 +97,30 @@ class LayerHelper(object):
raise
ValueError
(
"Data Type mismatch"
)
return
dtype
def
create_parameter
(
self
,
attr
,
shape
,
dtype
,
suffix
=
'w'
,
initializer
=
None
):
def
create_parameter
(
self
,
attr
,
shape
,
dtype
,
is_bias
=
False
,
default_initializer
=
None
):
# Deepcopy the attr so that parameters can be shared in program
attr_copy
=
copy
.
deepcopy
(
attr
)
if
initializer
is
not
None
:
attr_copy
[
'initializer'
]
=
initializer
assert
isinstance
(
attr
,
ParamAttr
)
suffix
=
'b'
if
is_bias
else
'w'
if
default_initializer
is
None
:
if
is_bias
:
attr
.
set_default_bias_initializer
()
else
:
attr
.
set_default_param_initializer
()
else
:
attr_copy
[
'initializer'
]
=
self
.
_get_default_initializer
(
dtype
)
if
attr_copy
[
'name'
]
is
None
:
attr_copy
[
'name'
]
=
unique_name
(
"."
.
join
([
self
.
name
,
suffix
]))
attr
.
set_default_initializer
(
default_initializer
)
if
attr
.
name
is
None
:
attr
.
name
=
unique_name
(
"."
.
join
([
self
.
name
,
suffix
]))
self
.
startup_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
_copy
)
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
to_kwargs
(
with_initializer
=
True
)
)
return
self
.
main_program
.
global_block
().
create_parameter
(
name
=
attr_copy
[
'name'
],
dtype
=
dtype
,
shape
=
shape
,
trainable
=
attr_copy
.
get
(
'trainable'
,
True
))
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
to_kwargs
())
def
create_tmp_variable
(
self
,
dtype
):
return
self
.
main_program
.
current_block
().
create_var
(
...
...
@@ -152,11 +145,7 @@ class LayerHelper(object):
persistable
=
True
,
initializer
=
initializer
)
def
append_bias_op
(
self
,
input_var
,
bias_initializer
,
dim_start
=
1
,
dim_end
=
None
):
def
append_bias_op
(
self
,
input_var
,
dim_start
=
1
,
dim_end
=
None
):
"""
Append bias operator and return its output. If the user does not set
bias_attr, append_bias_op will return input_var
...
...
@@ -176,11 +165,7 @@ class LayerHelper(object):
return
input_var
b
=
self
.
create_parameter
(
attr
=
bias_attr
,
shape
=
size
,
dtype
=
input_var
.
dtype
,
suffix
=
'b'
,
initializer
=
bias_initializer
)
attr
=
bias_attr
,
shape
=
size
,
dtype
=
input_var
.
dtype
,
is_bias
=
True
)
tmp
=
self
.
create_tmp_variable
(
dtype
=
input_var
.
dtype
)
self
.
append_op
(
type
=
'elementwise_add'
,
...
...
python/paddle/v2/fluid/layers.py
浏览文件 @
1b6dcc2f
...
...
@@ -5,6 +5,7 @@ from initializer import Constant, Normal, Xavier, Initializer
from
paddle.v2.fluid.layer_helper
import
LayerHelper
,
unique_name
import
re
import
cStringIO
from
param_attr
import
ParamAttr
__all__
=
[
'fc'
,
'data'
,
'cross_entropy'
,
'conv2d'
,
'pool2d'
,
'embedding'
,
'concat'
,
...
...
@@ -17,9 +18,7 @@ def fc(input,
size
,
num_flatten_dims
=
1
,
param_attr
=
None
,
param_initializer
=
None
,
bias_attr
=
None
,
bias_initializer
=
None
,
act
=
None
,
name
=
None
,
main_program
=
None
,
...
...
@@ -54,23 +53,10 @@ def fc(input,
to the LayerHelper constructor.
"""
def
_get_default_param_initializer
():
return
Xavier
()
def
_get_default_bias_initializer
():
return
Constant
()
helper
=
LayerHelper
(
'fc'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
if
param_initializer
is
None
:
param_initializer
=
_get_default_param_initializer
()
if
bias_initializer
is
None
:
bias_initializer
=
_get_default_bias_initializer
()
mul_results
=
[]
for
input_var
,
param_attr
in
helper
.
iter_inputs_and_params
():
input_shape
=
input_var
.
shape
...
...
@@ -78,10 +64,7 @@ def fc(input,
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
num_flatten_dims
:],
1
)
]
+
[
size
]
w
=
helper
.
create_parameter
(
attr
=
param_attr
,
initializer
=
param_initializer
,
shape
=
param_shape
,
dtype
=
dtype
)
attr
=
param_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
is_bias
=
False
)
tmp
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"mul"
,
...
...
@@ -102,7 +85,7 @@ def fc(input,
helper
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
mul_results
},
outputs
=
{
"Out"
:
pre_bias
})
# add bias
pre_activation
=
helper
.
append_bias_op
(
pre_bias
,
bias_initializer
)
pre_activation
=
helper
.
append_bias_op
(
pre_bias
)
# add activation
return
helper
.
append_activation
(
pre_activation
)
...
...
@@ -110,7 +93,6 @@ def fc(input,
def
embedding
(
input
,
size
,
is_sparse
=
False
,
param_initializer
=
None
,
param_attr
=
None
,
dtype
=
'float32'
,
main_program
=
None
,
...
...
@@ -119,6 +101,7 @@ def embedding(input,
Embedding Layer.
Args:
param_initializer:
input: The input to the function
size: The size of the layer
is_sparse: A flag that decleares whether the input is sparse
...
...
@@ -136,15 +119,9 @@ def embedding(input,
"""
def
_get_default_param_initializer
():
return
Xavier
()
helper
=
LayerHelper
(
'embedding'
,
**
locals
())
w
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
size
,
dtype
=
dtype
,
initializer
=
param_initializer
or
_get_default_param_initializer
())
attr
=
helper
.
param_attr
,
shape
=
size
,
dtype
=
dtype
,
is_bias
=
False
)
tmp
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
'lookup_table'
,
...
...
@@ -176,7 +153,7 @@ def dynamic_lstm(input,
if
not
use_peepholes
:
bias_size
[
1
]
=
4
*
size
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
bias_size
,
dtype
=
dtype
,
suffix
=
'b'
)
attr
=
helper
.
bias_attr
,
shape
=
bias_size
,
dtype
=
dtype
,
is_bias
=
True
)
hidden
=
helper
.
create_tmp_variable
(
dtype
)
cell
=
helper
.
create_tmp_variable
(
dtype
)
...
...
@@ -471,19 +448,14 @@ def sums(input, out=None, main_program=None, startup_program=None):
def
linear_chain_crf
(
input
,
label
,
param_attr
=
None
,
param_initializer
=
None
,
main_program
=
None
,
startup_program
=
None
):
def
_get_default_param_initializer
():
return
Xavier
()
helper
=
LayerHelper
(
'linear_chain_crf'
,
**
locals
())
size
=
input
.
shape
[
1
]
transition
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
size
+
2
,
size
],
dtype
=
helper
.
input_dtype
(),
initializer
=
param_initializer
or
_get_default_param_initializer
())
dtype
=
helper
.
input_dtype
())
alpha
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
emission_exps
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
transition_exps
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
...
...
@@ -646,9 +618,7 @@ def sequence_conv(input,
filter_stride
=
1
,
padding
=
None
,
bias_attr
=
None
,
bias_initializer
=
None
,
param_attr
=
None
,
param_initializer
=
None
,
act
=
None
,
main_program
=
None
,
startup_program
=
None
):
...
...
@@ -658,30 +628,15 @@ def sequence_conv(input,
in the input parameters to the function.
"""
def
_get_default_bias_initializer
():
return
Constant
()
def
_get_default_param_initializer
():
return
Xavier
()
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes.
# such as, padding_trainable, context_start.
helper
=
LayerHelper
(
'sequence_conv'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
if
param_initializer
is
None
:
param_initializer
=
_get_default_param_initializer
()
if
bias_initializer
is
None
:
bias_initializer
=
_get_default_bias_initializer
()
filter_shape
=
[
filter_size
*
input
.
shape
[
1
],
num_filters
]
filter
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
filter_shape
,
dtype
=
dtype
,
initializer
=
param_initializer
)
attr
=
helper
.
param_attr
,
shape
=
filter_shape
,
dtype
=
dtype
)
pre_bias
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
...
...
@@ -696,7 +651,7 @@ def sequence_conv(input,
'contextStart'
:
-
int
(
filter_size
/
2
),
'contextLength'
:
filter_size
})
pre_act
=
helper
.
append_bias_op
(
pre_bias
,
bias_initializer
)
pre_act
=
helper
.
append_bias_op
(
pre_bias
)
return
helper
.
append_activation
(
pre_act
)
...
...
@@ -707,9 +662,7 @@ def conv2d(input,
padding
=
None
,
groups
=
None
,
param_attr
=
None
,
param_initializer
=
None
,
bias_attr
=
None
,
bias_initializer
=
None
,
act
=
None
,
name
=
None
,
main_program
=
None
,
...
...
@@ -722,13 +675,6 @@ def conv2d(input,
conv-2d output, if mentioned in the input parameters.
"""
def
_get_default_bias_initializer
():
return
Constant
()
def
_get_default_param_initializer
(
filter_size
,
num_channels
):
std
=
(
2.0
/
(
filter_size
[
0
]
**
2
*
num_channels
))
**
0.5
return
Normal
(
0.0
,
std
,
0
)
helper
=
LayerHelper
(
'conv2d'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -750,17 +696,16 @@ def conv2d(input,
input_shape
=
input
.
shape
filter_shape
=
[
num_filters
,
num_filter_channels
]
+
filter_size
if
param_initializer
is
None
:
param_initializer
=
_get_default_param_initializer
(
filter_size
,
num_channels
)
if
bias_initializer
is
None
:
bias_initializer
=
_get_default_bias_initializer
()
def
_get_default_param_initializer
():
std
=
(
2.0
/
(
filter_size
[
0
]
**
2
*
num_channels
))
**
0.5
return
Normal
(
0.0
,
std
,
0
)
filter
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
filter_shape
,
dtype
=
dtype
,
initializer
=
param_initializer
)
default_initializer
=
_get_default_param_initializer
())
pre_bias
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
...
...
@@ -774,8 +719,7 @@ def conv2d(input,
'paddings'
:
padding
,
'groups'
:
groups
})
pre_act
=
helper
.
append_bias_op
(
pre_bias
,
bias_initializer
,
dim_start
=
1
,
dim_end
=
2
)
pre_act
=
helper
.
append_bias_op
(
pre_bias
,
dim_start
=
1
,
dim_end
=
2
)
return
helper
.
append_activation
(
pre_act
)
...
...
@@ -876,12 +820,10 @@ def batch_norm(input,
attr
=
helper
.
param_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
initializer
=
Constant
(
1.0
))
default_initializer
=
Constant
(
1.0
))
bias
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
initializer
=
Constant
(
0.0
))
attr
=
helper
.
param_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
is_bias
=
True
)
mean
=
helper
.
create_global_variable
(
dtype
=
input
.
dtype
,
shape
=
param_shape
,
persistable
=
True
)
...
...
@@ -1356,7 +1298,7 @@ def lod_rank_table(x, level=0, main_program=None):
def
max_sequence_len
(
rank_table
,
main_program
=
None
):
"""
This function creates an operator to calculate the length of
This function creates an operator to calculate the length of
max seqence through input rank_table(should be a lod_rank_table)
"""
helper
=
LayerHelper
(
"max_seqence_len"
,
**
locals
())
...
...
@@ -1594,35 +1536,33 @@ def conv2d_transpose(input,
padding
=
None
,
stride
=
None
,
param_attr
=
None
,
param_initializer
=
None
,
main_program
=
None
,
startup_program
=
None
):
"""
The transpose of conv2d layer.
This layer is also known as deconvolution layer.
Args:
input(Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of filter. It is as same as the output
image channel.
output_size(int|tuple|None): The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). This
tuple, it must contain two integers, (image_H, image_W). This
parameter only works when filter_size is None.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square. None if use output size to
calculate filter_size
padding(int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding.
stride(int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride.
param_attr: Parameter Attribute.
param_initializer(Initializer): Parameter Initializer. Default is Xavier
main_program(Program): the main program
startup_program(Program): the startup program
startup_program(Program): the startup program
Returns:
Variable: Output image.
...
...
@@ -1663,10 +1603,7 @@ def conv2d_transpose(input,
filter_shape
=
[
input_channel
,
num_filters
]
+
filter_size
img_filter
=
helper
.
create_parameter
(
dtype
=
input
.
dtype
,
shape
=
filter_shape
,
attr
=
helper
.
param_attr
,
initializer
=
param_initializer
)
dtype
=
input
.
dtype
,
shape
=
filter_shape
,
attr
=
helper
.
param_attr
)
out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
...
...
@@ -1675,6 +1612,7 @@ def conv2d_transpose(input,
'Filter'
:
[
img_filter
]},
outputs
=
{
'Output'
:
out
},
attrs
=
op_attr
)
return
out
...
...
python/paddle/v2/fluid/param_attr.py
0 → 100644
浏览文件 @
1b6dcc2f
from
initializer
import
Initializer
,
Xavier
,
Constant
from
regularizer
import
WeightDecayRegularizer
class
ParamAttr
(
object
):
def
__init__
(
self
,
name
=
None
,
initializer
=
None
,
learning_rate
=
1.0
,
regularizer
=
None
,
trainable
=
True
):
self
.
name
=
name
self
.
initializer
=
initializer
self
.
learning_rate
=
learning_rate
self
.
regularizer
=
regularizer
self
.
trainable
=
trainable
def
set_default_initializer
(
self
,
initializer
):
if
initializer
is
None
:
if
self
.
initializer
is
None
:
raise
ValueError
(
"ParamAttr.initializer is not set"
)
return
if
self
.
initializer
is
not
None
:
return
self
.
initializer
=
initializer
def
set_default_param_initializer
(
self
):
self
.
set_default_initializer
(
Xavier
())
def
set_default_bias_initializer
(
self
):
self
.
set_default_initializer
(
Constant
(
0.0
))
@
staticmethod
def
to_attr
(
arg
):
if
arg
is
None
:
return
ParamAttr
()
elif
isinstance
(
arg
,
ParamAttr
):
return
arg
elif
isinstance
(
arg
,
str
)
or
isinstance
(
arg
,
unicode
):
return
ParamAttr
(
name
=
arg
)
elif
isinstance
(
arg
,
Initializer
):
return
ParamAttr
(
initializer
=
arg
)
elif
isinstance
(
arg
,
WeightDecayRegularizer
):
return
ParamAttr
(
regularizer
=
arg
)
elif
isinstance
(
arg
,
bool
):
return
ParamAttr
.
to_attr
(
None
)
if
arg
else
False
else
:
raise
TypeError
(
"{0} cast to ParamAttr"
.
format
(
type
(
arg
)))
def
to_kwargs
(
self
,
with_initializer
=
False
):
kwargs
=
{
'name'
:
self
.
name
,
'learning_rate'
:
self
.
learning_rate
,
'regularizer'
:
self
.
regularizer
,
'trainable'
:
self
.
trainable
}
if
with_initializer
:
kwargs
[
'initializer'
]
=
self
.
initializer
return
kwargs
python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
浏览文件 @
1b6dcc2f
...
...
@@ -44,7 +44,7 @@ def db_lstm():
size
=
[
pred_len
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
{
'name'
:
'vemb'
}
)
param_attr
=
'vemb'
)
mark_embedding
=
fluid
.
layers
.
embedding
(
input
=
mark
,
...
...
@@ -57,8 +57,8 @@ def db_lstm():
fluid
.
layers
.
embedding
(
size
=
[
word_dict_len
,
word_dim
],
input
=
x
,
param_attr
=
{
'name'
:
embedding_name
,
'trainable'
:
False
}
)
for
x
in
word_input
param_attr
=
fluid
.
ParamAttr
(
name
=
embedding_name
,
trainable
=
False
)
)
for
x
in
word_input
]
emb_layers
.
append
(
predicate_embedding
)
emb_layers
.
append
(
mark_embedding
)
...
...
@@ -125,8 +125,8 @@ def main():
crf_cost
=
fluid
.
layers
.
linear_chain_crf
(
input
=
feature_out
,
label
=
target
,
param_attr
=
{
"name"
:
'crfw'
,
"learning_rate"
:
mix_hidden_lr
}
)
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
learning_rate
=
mix_hidden_lr
)
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
crf_cost
)
# TODO(qiao)
# 1. add crf_decode_layer and evaluator
...
...
python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py
浏览文件 @
1b6dcc2f
...
...
@@ -6,24 +6,21 @@ import paddle.v2.fluid as fluid
BATCH_SIZE
=
128
image
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
784
],
dtype
=
'float32'
)
param_attr
=
{
'name'
:
None
,
'regularization'
:
fluid
.
regularizer
.
L2Decay
(
0.0005
*
BATCH_SIZE
)
}
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.0005
*
BATCH_SIZE
)
hidden1
=
fluid
.
layers
.
fc
(
input
=
image
,
size
=
128
,
act
=
'relu'
,
param_attr
=
param_att
r
)
param_attr
=
regularize
r
)
hidden2
=
fluid
.
layers
.
fc
(
input
=
hidden1
,
size
=
64
,
act
=
'relu'
,
param_attr
=
param_att
r
)
param_attr
=
regularize
r
)
predict
=
fluid
.
layers
.
fc
(
input
=
hidden2
,
size
=
10
,
act
=
'softmax'
,
param_attr
=
param_att
r
)
param_attr
=
regularize
r
)
label
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'int64'
)
...
...
python/paddle/v2/fluid/tests/book/test_recommender_system.py
浏览文件 @
1b6dcc2f
...
...
@@ -24,7 +24,7 @@ def get_usr_combined_features():
input
=
uid
,
dtype
=
'float32'
,
size
=
[
USR_DICT_SIZE
,
32
],
param_attr
=
{
'name'
:
'user_table'
}
,
param_attr
=
'user_table'
,
is_sparse
=
IS_SPARSE
)
usr_fc
=
layers
.
fc
(
input
=
usr_emb
,
size
=
32
)
...
...
@@ -36,7 +36,7 @@ def get_usr_combined_features():
usr_gender_emb
=
layers
.
embedding
(
input
=
usr_gender_id
,
size
=
[
USR_GENDER_DICT_SIZE
,
16
],
param_attr
=
{
'name'
:
'gender_table'
}
,
param_attr
=
'gender_table'
,
is_sparse
=
IS_SPARSE
)
usr_gender_fc
=
layers
.
fc
(
input
=
usr_gender_emb
,
size
=
16
)
...
...
@@ -48,7 +48,7 @@ def get_usr_combined_features():
input
=
usr_age_id
,
size
=
[
USR_AGE_DICT_SIZE
,
16
],
is_sparse
=
IS_SPARSE
,
param_attr
=
{
'name'
:
'age_table'
}
)
param_attr
=
'age_table'
)
usr_age_fc
=
layers
.
fc
(
input
=
usr_age_emb
,
size
=
16
)
...
...
@@ -58,7 +58,7 @@ def get_usr_combined_features():
usr_job_emb
=
layers
.
embedding
(
input
=
usr_job_id
,
size
=
[
USR_JOB_DICT_SIZE
,
16
],
param_attr
=
{
'name'
:
'job_table'
}
,
param_attr
=
'job_table'
,
is_sparse
=
IS_SPARSE
)
usr_job_fc
=
layers
.
fc
(
input
=
usr_job_emb
,
size
=
16
)
...
...
@@ -81,7 +81,7 @@ def get_mov_combined_features():
input
=
mov_id
,
dtype
=
'float32'
,
size
=
[
MOV_DICT_SIZE
,
32
],
param_attr
=
{
'name'
:
'movie_table'
}
,
param_attr
=
'movie_table'
,
is_sparse
=
IS_SPARSE
)
mov_fc
=
layers
.
fc
(
input
=
mov_emb
,
size
=
32
)
...
...
python/paddle/v2/fluid/tests/book/test_word2vec.py
浏览文件 @
1b6dcc2f
...
...
@@ -23,25 +23,25 @@ embed_first = fluid.layers.embedding(
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
{
'name'
:
'shared_w'
}
)
param_attr
=
'shared_w'
)
embed_second
=
fluid
.
layers
.
embedding
(
input
=
second_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
{
'name'
:
'shared_w'
}
)
param_attr
=
'shared_w'
)
embed_third
=
fluid
.
layers
.
embedding
(
input
=
third_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
{
'name'
:
'shared_w'
}
)
param_attr
=
'shared_w'
)
embed_forth
=
fluid
.
layers
.
embedding
(
input
=
forth_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
{
'name'
:
'shared_w'
}
)
param_attr
=
'shared_w'
)
concat_embed
=
fluid
.
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
axis
=
1
)
...
...
python/paddle/v2/fluid/tests/test_layers.py
浏览文件 @
1b6dcc2f
...
...
@@ -132,26 +132,26 @@ class TestBook(unittest.TestCase):
input
=
first_word
,
size
=
[
dict_size
,
embed_size
],
dtype
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
}
,
param_attr
=
'shared_w'
,
main_program
=
program
)
embed_second
=
layers
.
embedding
(
input
=
second_word
,
size
=
[
dict_size
,
embed_size
],
dtype
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
}
,
param_attr
=
'shared_w'
,
main_program
=
program
)
embed_third
=
layers
.
embedding
(
input
=
third_word
,
size
=
[
dict_size
,
embed_size
],
dtype
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
}
,
param_attr
=
'shared_w'
,
main_program
=
program
)
embed_forth
=
layers
.
embedding
(
input
=
forth_word
,
size
=
[
dict_size
,
embed_size
],
dtype
=
'float32'
,
param_attr
=
{
'name'
:
'shared_w'
}
,
param_attr
=
'shared_w'
,
main_program
=
program
)
concat_embed
=
layers
.
concat
(
...
...
python/paddle/v2/fluid/tests/test_recurrent_op.py
浏览文件 @
1b6dcc2f
...
...
@@ -271,12 +271,12 @@ class RecurrentOpTest2(RecurrentOpTest1):
temp_l
=
layers
.
fc
(
input
=
x_t
,
size
=
self
.
input_dim
,
param_attr
=
{
'name'
:
'W'
}
,
param_attr
=
'W'
,
bias_attr
=
False
,
**
self
.
p_info
)
temp_r
=
layers
.
fc
(
input
=
h_pre
,
size
=
self
.
input_dim
,
param_attr
=
{
'name'
:
'U'
}
,
param_attr
=
'U'
,
bias_attr
=
False
,
**
self
.
p_info
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录