Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1b59bed9
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1b59bed9
编写于
3月 15, 2019
作者:
L
luotao1
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into runtime_context
上级
6ce25c99
8ad672a2
变更
23
展开全部
隐藏空白更改
内联
并排
Showing
23 changed file
with
1189 addition
and
303 deletion
+1189
-303
cmake/operators.cmake
cmake/operators.cmake
+1
-1
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+7
-0
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+2
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+2
-0
paddle/fluid/framework/ir/sync_batch_norm_pass.cc
paddle/fluid/framework/ir/sync_batch_norm_pass.cc
+45
-0
paddle/fluid/framework/ir/sync_batch_norm_pass.h
paddle/fluid/framework/ir/sync_batch_norm_pass.h
+32
-0
paddle/fluid/framework/ir/sync_batch_norm_pass_tester.cc
paddle/fluid/framework/ir/sync_batch_norm_pass_tester.cc
+80
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+16
-0
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+4
-2
paddle/fluid/operators/batch_norm_op.cc
paddle/fluid/operators/batch_norm_op.cc
+228
-246
paddle/fluid/operators/batch_norm_op.cu
paddle/fluid/operators/batch_norm_op.cu
+19
-39
paddle/fluid/operators/batch_norm_op.h
paddle/fluid/operators/batch_norm_op.h
+72
-2
paddle/fluid/operators/sync_batch_norm_op.cc
paddle/fluid/operators/sync_batch_norm_op.cc
+20
-0
paddle/fluid/operators/sync_batch_norm_op.cu
paddle/fluid/operators/sync_batch_norm_op.cu
+452
-0
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+1
-1
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+13
-0
paddle/fluid/platform/init.cc
paddle/fluid/platform/init.cc
+3
-0
paddle/fluid/platform/nccl_helper.h
paddle/fluid/platform/nccl_helper.h
+4
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+15
-0
python/paddle/fluid/compiler.py
python/paddle/fluid/compiler.py
+3
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+10
-11
python/paddle/fluid/tests/unittests/test_sync_batch_norm_op.py
...n/paddle/fluid/tests/unittests/test_sync_batch_norm_op.py
+159
-0
未找到文件。
cmake/operators.cmake
浏览文件 @
1b59bed9
...
...
@@ -110,7 +110,7 @@ function(op_library TARGET)
# Define operators that don't need pybind here.
foreach
(
manual_pybind_op
"compare_op"
"logical_op"
"nccl_op"
"tensor_array_read_write_op"
"tensorrt_engine_op"
"conv_fusion_op"
"fusion_transpose_flatten_concat_op"
"fusion_conv_inception_op"
)
"fusion_transpose_flatten_concat_op"
"fusion_conv_inception_op"
"sync_batch_norm_op"
)
if
(
"
${
TARGET
}
"
STREQUAL
"
${
manual_pybind_op
}
"
)
set
(
pybind_flag 1
)
endif
()
...
...
paddle/fluid/API.spec
浏览文件 @
1b59bed9
...
...
@@ -91,7 +91,7 @@ paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'po
paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True)), ('document', '043de7333b79ee0ac55053c14ed81625'))
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '859b887174d06f361658f69cb7c06d95'))
paddle.fluid.layers.adaptive_pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '120f4323a3d7ed9c0916f15a59f0e497'))
paddle.fluid.layers.batch_norm (ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False, False)), ('document', '
c527b71b8a4c60dca8df8a745c2b598d
'))
paddle.fluid.layers.batch_norm (ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False, False)), ('document', '
320c6973b02ea179fa89fecc80796464
'))
paddle.fluid.layers.data_norm (ArgSpec(args=['input', 'act', 'epsilon', 'param_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var'], varargs=None, keywords=None, defaults=(None, 1e-05, None, 'NCHW', False, None, None, None, False)), ('document', 'e45e09e65a2658e07cad987222f0d9ab'))
paddle.fluid.layers.beam_search_decode (ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b0b8d53821716cd50c42e09b593f3feb'))
paddle.fluid.layers.conv2d_transpose (ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)), ('document', '03993955ab1e6d3044c44e6f17fc85e9'))
...
...
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
1b59bed9
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include <glog/logging.h>
#include <memory>
#include <utility>
#include "paddle/fluid/framework/details/memory_optimize_helper.h"
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
...
...
@@ -49,6 +50,11 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
AppendPass
(
"sequential_execution_pass"
);
}
// Add op fusion.
if
(
strategy
.
sync_batch_norm_
)
{
AppendPass
(
"sync_batch_norm_pass"
);
}
// Add op fusion.
if
(
strategy
.
fuse_relu_depthwise_conv_
)
{
AppendPass
(
"fuse_relu_depthwise_conv_pass"
);
...
...
@@ -227,6 +233,7 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
}
// namespace framework
}
// namespace paddle
USE_PASS
(
sync_batch_norm_pass
);
USE_PASS
(
fuse_relu_depthwise_conv_pass
);
USE_PASS
(
fuse_elewise_add_act_pass
);
USE_PASS
(
graph_viz_pass
);
...
...
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
1b59bed9
...
...
@@ -77,6 +77,8 @@ struct BuildStrategy {
bool
fuse_relu_depthwise_conv_
{
false
};
bool
sync_batch_norm_
{
false
};
bool
memory_optimize_
{
true
};
// TODO(dzhwinter):
// make enable_inplace, memory_optimize_
...
...
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
1b59bed9
...
...
@@ -67,6 +67,7 @@ pass_library(conv_elementwise_add_fuse_pass inference)
pass_library
(
conv_affine_channel_fuse_pass inference
)
pass_library
(
transpose_flatten_concat_fuse_pass inference
)
pass_library
(
identity_scale_op_clean_pass base
)
pass_library
(
sync_batch_norm_pass base
)
pass_library
(
runtime_context_cache_pass base
)
# There may be many transpose-flatten structures in a model, and the output of
...
...
@@ -102,6 +103,7 @@ cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS g
cc_test
(
test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto
)
cc_test
(
test_seqpool_concat_fuse_pass SRCS seqpool_concat_fuse_pass_tester.cc DEPS seqpool_concat_fuse_pass framework_proto
)
cc_test
(
test_is_test_pass SRCS is_test_pass_tester.cc DEPS is_test_pass
)
cc_test
(
test_sync_batch_norm_pass SRCS sync_batch_norm_pass_tester.cc DEPS sync_batch_norm_pass
)
cc_test
(
test_cpu_quantize_squash_pass SRCS cpu_quantize_squash_pass_tester.cc DEPS cpu_quantize_squash_pass naive_executor
)
if
(
WITH_MKLDNN
)
cc_test
(
test_depthwise_conv_mkldnn_pass SRCS mkldnn/depthwise_conv_mkldnn_pass_tester.cc DEPS depthwise_conv_mkldnn_pass
)
...
...
paddle/fluid/framework/ir/sync_batch_norm_pass.cc
0 → 100644
浏览文件 @
1b59bed9
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/sync_batch_norm_pass.h"
#include <memory>
#include <string>
#include <utility>
namespace
paddle
{
namespace
framework
{
namespace
ir
{
std
::
unique_ptr
<
ir
::
Graph
>
SyncBatchNormPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
VLOG
(
3
)
<<
"Use synchronous batch norm"
;
for
(
const
Node
*
n
:
graph
->
Nodes
())
{
if
(
n
->
IsOp
())
{
auto
*
op
=
n
->
Op
();
if
(
op
->
Type
()
==
"batch_norm"
)
{
op
->
SetType
(
"sync_batch_norm"
);
}
if
(
op
->
Type
()
==
"batch_norm_grad"
)
{
op
->
SetType
(
"sync_batch_norm_grad"
);
}
}
}
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
sync_batch_norm_pass
,
paddle
::
framework
::
ir
::
SyncBatchNormPass
);
paddle/fluid/framework/ir/sync_batch_norm_pass.h
0 → 100644
浏览文件 @
1b59bed9
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
SyncBatchNormPass
:
public
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/sync_batch_norm_pass_tester.cc
0 → 100644
浏览文件 @
1b59bed9
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/sync_batch_norm_pass.h"
#include <gtest/gtest.h>
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
SetOp
(
ProgramDesc
*
prog
,
const
std
::
string
&
type
,
const
std
::
string
&
name
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
vector
<
std
::
string
>&
outputs
)
{
auto
*
op
=
prog
->
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
type
);
op
->
SetAttr
(
"name"
,
name
);
op
->
SetInput
(
"X"
,
inputs
);
op
->
SetOutput
(
"Out"
,
outputs
);
}
// (a, conv_w)->conv2d->b
// (b, bn_scale, bn_bias, mean, var)->batch_norm
// ->(c, mean, var, save_mean, save_inv_var)
ProgramDesc
BuildProgramDesc
()
{
ProgramDesc
prog
;
for
(
auto
&
v
:
std
::
vector
<
std
::
string
>
({
"a"
,
"conv_w"
,
"b"
,
"bn_scale"
,
"bn_bias"
,
"mean"
,
"var"
,
"c"
,
"save_mean"
,
"save_inv_var"
}))
{
auto
*
var
=
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
if
(
v
==
"conv_w"
||
v
==
"bn_scale"
||
v
==
"bn_bias"
||
v
==
"mean"
||
v
==
"var"
)
{
var
->
SetPersistable
(
true
);
}
}
SetOp
(
&
prog
,
"conv2d"
,
"conv"
,
std
::
vector
<
std
::
string
>
({
"a"
,
"conv_w"
}),
std
::
vector
<
std
::
string
>
({
"b"
}));
SetOp
(
&
prog
,
"batch_norm"
,
"bn"
,
std
::
vector
<
std
::
string
>
({
"b"
,
"bn_scale"
,
"bn_bias"
,
"mean"
,
"var"
}),
std
::
vector
<
std
::
string
>
(
{
"c"
,
"mean"
,
"var"
,
"save_mean"
,
"save_inv_var"
}));
return
prog
;
}
TEST
(
IsTestPass
,
basic
)
{
auto
prog
=
BuildProgramDesc
();
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"sync_batch_norm_pass"
);
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
auto
*
op
=
node
->
Op
();
auto
op_name
=
boost
::
get
<
std
::
string
>
(
op
->
GetAttr
(
"name"
));
if
(
op_name
==
"bn"
)
{
ASSERT_EQ
(
op
->
Type
(),
"sync_batch_norm"
);
}
}
}
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
sync_batch_norm_pass
);
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
1b59bed9
...
...
@@ -14,8 +14,10 @@ limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h"
#include <algorithm>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/ir/graph_helper.h"
...
...
@@ -251,6 +253,20 @@ ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
member_
->
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
member_
->
places_
,
nccl_id
,
build_strategy
.
num_trainers_
,
build_strategy
.
trainer_id_
));
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
dev_nccl_ctxs
;
dev_nccl_ctxs
.
reset
(
new
platform
::
NCCLContextMap
(
member_
->
places_
));
// Initialize device context's nccl comm
// Note, more than one ParallelExecutor with same place, the nccl comm will
// be rewrite and there will be some problem.
for
(
size_t
dev_id
=
0
;
dev_id
<
member_
->
places_
.
size
();
++
dev_id
)
{
auto
&
nccl_ctx
=
dev_nccl_ctxs
->
at
(
dev_id
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
pool
.
Get
(
member_
->
places_
[
dev_id
]));
dev_ctx
->
set_nccl_comm
(
nccl_ctx
.
comm
());
}
#else
PADDLE_THROW
(
"Not compiled with CUDA"
);
#endif
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
1b59bed9
...
...
@@ -44,10 +44,10 @@ if (WITH_DISTRIBUTE)
SET
(
OP_PREFETCH_DEPS
${
OP_PREFETCH_DEPS
}
parameter_prefetch
)
endif
()
register_operators
(
EXCLUDES py_func_op warpctc_op conv_fusion_op DEPS
${
OP_HEADER_DEPS
}
${
OP_PREFETCH_DEPS
}
)
register_operators
(
EXCLUDES py_func_op warpctc_op conv_fusion_op
sync_batch_norm_op
DEPS
${
OP_HEADER_DEPS
}
${
OP_PREFETCH_DEPS
}
)
# warpctc_op needs cudnn 7 above
if
(
WITH_GPU
)
# warpctc_op needs cudnn 7 above
if
(
${
CUDNN_MAJOR_VERSION
}
VERSION_LESS 7
)
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale SRCS warpctc_op.cc warpctc_op.cu.cc
)
else
()
...
...
@@ -58,6 +58,8 @@ if (WITH_GPU)
op_library
(
conv_fusion_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(conv2d_fusion);
\n
"
)
endif
()
op_library
(
sync_batch_norm_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(sync_batch_norm);
\n
"
)
else
()
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale
)
endif
()
...
...
paddle/fluid/operators/batch_norm_op.cc
浏览文件 @
1b59bed9
此差异已折叠。
点击以展开。
paddle/fluid/operators/batch_norm_op.cu
浏览文件 @
1b59bed9
...
...
@@ -33,26 +33,6 @@ using CudnnDataType = platform::CudnnDataType<T>;
template
<
typename
T
>
using
BatchNormParamType
=
typename
CudnnDataType
<
T
>::
BatchNormParamType
;
void
ExtractNCWHD
(
const
framework
::
DDim
&
dims
,
const
DataLayout
&
data_layout
,
int
*
N
,
int
*
C
,
int
*
H
,
int
*
W
,
int
*
D
)
{
*
N
=
dims
[
0
];
if
(
dims
.
size
()
==
2
)
{
*
C
=
dims
[
1
];
*
H
=
1
;
*
W
=
1
;
*
D
=
1
;
}
else
{
*
C
=
data_layout
==
DataLayout
::
kNCHW
?
dims
[
1
]
:
dims
[
dims
.
size
()
-
1
];
*
H
=
data_layout
==
DataLayout
::
kNCHW
?
dims
[
2
]
:
dims
[
1
];
*
W
=
dims
.
size
()
>
3
?
(
data_layout
==
DataLayout
::
kNCHW
?
dims
[
3
]
:
dims
[
2
])
:
1
;
*
D
=
dims
.
size
()
>
4
?
(
data_layout
==
DataLayout
::
kNCHW
?
dims
[
4
]
:
dims
[
3
])
:
1
;
}
}
template
<
typename
T
>
class
BatchNormKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -196,22 +176,6 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
}
};
template
<
typename
T
,
framework
::
DataLayout
layout
>
static
__global__
void
KeBNBackwardData
(
const
T
*
dy
,
const
BatchNormParamType
<
T
>
*
scale
,
const
BatchNormParamType
<
T
>
*
variance
,
const
double
epsilon
,
const
int
C
,
const
int
HxW
,
const
int
num
,
T
*
dx
)
{
int
gid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
gid
;
i
<
num
;
i
+=
stride
)
{
const
int
c
=
layout
==
framework
::
DataLayout
::
kNCHW
?
i
/
HxW
%
C
:
i
%
C
;
BatchNormParamType
<
T
>
inv_var
=
1.0
/
sqrt
(
variance
[
c
]
+
epsilon
);
dx
[
i
]
=
static_cast
<
T
>
(
static_cast
<
BatchNormParamType
<
T
>>
(
dy
[
i
])
*
scale
[
c
]
*
inv_var
);
}
}
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
static
__global__
void
KeBNBackwardScaleBias
(
const
T
*
dy
,
const
T
*
x
,
const
BatchNormParamType
<
T
>
*
mean
,
...
...
@@ -248,6 +212,22 @@ static __global__ void KeBNBackwardScaleBias(
}
}
template
<
typename
T
,
framework
::
DataLayout
layout
>
static
__global__
void
KeBNBackwardData
(
const
T
*
dy
,
const
BatchNormParamType
<
T
>
*
scale
,
const
BatchNormParamType
<
T
>
*
variance
,
const
double
epsilon
,
const
int
C
,
const
int
HxW
,
const
int
num
,
T
*
dx
)
{
int
gid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
gid
;
i
<
num
;
i
+=
stride
)
{
const
int
c
=
layout
==
framework
::
DataLayout
::
kNCHW
?
i
/
HxW
%
C
:
i
%
C
;
BatchNormParamType
<
T
>
inv_var
=
1.0
/
sqrt
(
variance
[
c
]
+
epsilon
);
dx
[
i
]
=
static_cast
<
T
>
(
static_cast
<
BatchNormParamType
<
T
>>
(
dy
[
i
])
*
scale
[
c
]
*
inv_var
);
}
}
template
<
typename
T
>
class
BatchNormGradKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -383,7 +363,7 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
KeBNBackwardScaleBias
<
T
,
block
,
framework
::
DataLayout
::
kNCHW
><<<
grid2
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
d_y
->
data
<
T
>
(),
x
->
data
<
T
>
(),
running_mean_data
,
running_var_data
,
epsilon
,
C
,
H
*
W
,
num
,
d_scale
->
data
<
BatchNormParamType
<
T
>>
(),
epsilon
,
N
,
C
,
H
*
W
*
D
,
d_scale
->
data
<
BatchNormParamType
<
T
>>
(),
d_bias
->
data
<
BatchNormParamType
<
T
>>
());
}
}
else
{
...
...
@@ -394,10 +374,10 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
running_var_data
,
epsilon
,
C
,
H
*
W
,
num
,
d_x
->
data
<
T
>
());
}
if
(
d_scale
&&
d_bias
)
{
KeBNBackwardScaleBias
<
T
,
block
,
framework
::
DataLayout
::
kN
CHW
><<<
KeBNBackwardScaleBias
<
T
,
block
,
framework
::
DataLayout
::
kN
HWC
><<<
grid2
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
d_y
->
data
<
T
>
(),
x
->
data
<
T
>
(),
running_mean_data
,
running_var_data
,
epsilon
,
C
,
H
*
W
,
num
,
d_scale
->
data
<
BatchNormParamType
<
T
>>
(),
epsilon
,
N
,
C
,
H
*
W
*
D
,
d_scale
->
data
<
BatchNormParamType
<
T
>>
(),
d_bias
->
data
<
BatchNormParamType
<
T
>>
());
}
}
...
...
paddle/fluid/operators/batch_norm_op.h
浏览文件 @
1b59bed9
...
...
@@ -13,6 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -35,17 +38,84 @@ template <typename T>
using
ConstEigenVectorArrayMap
=
Eigen
::
Map
<
const
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>>
;
class
BatchNormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
BatchNormGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
BatchNormOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
};
class
BatchNormGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
;
virtual
std
::
string
GradOpType
()
const
{
return
this
->
ForwardOpType
()
+
"_grad"
;
}
};
class
BatchNormOpInferVarType
:
public
framework
::
PassInDtypeAndVarTypeToOutput
{
protected:
std
::
unordered_map
<
std
::
string
,
std
::
string
>
GetInputOutputWithSameType
()
const
override
{
return
std
::
unordered_map
<
std
::
string
,
std
::
string
>
{{
"X"
,
/*->*/
"Y"
}};
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
BatchNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
BatchNormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
inline
void
ExtractNCWHD
(
const
framework
::
DDim
&
dims
,
const
DataLayout
&
data_layout
,
int
*
N
,
int
*
C
,
int
*
H
,
int
*
W
,
int
*
D
)
{
*
N
=
dims
[
0
];
if
(
dims
.
size
()
==
2
)
{
*
C
=
dims
[
1
];
*
H
=
1
;
*
W
=
1
;
*
D
=
1
;
}
else
{
*
C
=
data_layout
==
DataLayout
::
kNCHW
?
dims
[
1
]
:
dims
[
dims
.
size
()
-
1
];
*
H
=
data_layout
==
DataLayout
::
kNCHW
?
dims
[
2
]
:
dims
[
1
];
*
W
=
dims
.
size
()
>
3
?
(
data_layout
==
DataLayout
::
kNCHW
?
dims
[
3
]
:
dims
[
2
])
:
1
;
*
D
=
dims
.
size
()
>
4
?
(
data_layout
==
DataLayout
::
kNCHW
?
dims
[
4
]
:
dims
[
3
])
:
1
;
}
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/sync_batch_norm_op.cc
0 → 100644
浏览文件 @
1b59bed9
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/batch_norm_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
sync_batch_norm
,
ops
::
BatchNormOp
,
ops
::
BatchNormOpMaker
,
ops
::
BatchNormOpInferVarType
,
ops
::
BatchNormGradMaker
);
REGISTER_OPERATOR
(
sync_batch_norm_grad
,
ops
::
BatchNormGradOp
);
paddle/fluid/operators/sync_batch_norm_op.cu
0 → 100644
浏览文件 @
1b59bed9
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <cfloat>
#include <string>
#include <vector>
#include "cub/cub.cuh"
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/nccl_helper.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
using
CudnnDataType
=
platform
::
CudnnDataType
<
T
>
;
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
__global__
void
KeLocalStats
(
const
T
*
x
,
int
N
,
int
M
,
int
C
,
T
*
mean_var
)
{
typedef
cub
::
BlockReduce
<
T
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
for
(
int
k
=
blockIdx
.
x
;
k
<
C
;
k
+=
gridDim
.
x
)
{
T
x_sum
=
0
;
T
x2_sum
=
0
;
for
(
int
i
=
threadIdx
.
x
;
i
<
N
*
M
;
i
+=
BlockDim
)
{
int
id
=
layout
==
framework
::
DataLayout
::
kNCHW
?
(
i
/
M
)
*
C
*
M
+
k
*
M
+
i
%
M
:
i
*
C
+
k
;
T
x_in
=
x
[
id
];
x_sum
+=
x_in
;
x2_sum
+=
x_in
*
x_in
;
}
__syncthreads
();
T
out
=
BlockReduce
(
temp_storage
).
Reduce
(
x_sum
,
cub
::
Sum
());
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
mean_var
[
k
]
=
out
/
(
N
*
M
);
}
out
=
BlockReduce
(
temp_storage
).
Reduce
(
x2_sum
,
cub
::
Sum
());
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
mean_var
[
k
+
C
]
=
out
/
(
N
*
M
);
}
}
if
(
blockIdx
.
x
==
0
&&
threadIdx
.
x
==
0
)
{
mean_var
[
2
*
C
]
=
static_cast
<
T
>
(
1.0
);
}
}
template
<
typename
T
>
__global__
void
KeSyncAndMovingStats
(
T
*
means
,
T
*
variances
,
T
*
num_dev
,
const
int
C
,
const
T
momentum
,
const
double
epsilon
,
T
*
sv_mean_data
,
T
*
sv_inv_var_data
,
T
*
moving_means
,
T
*
moving_variances
)
{
// sync stats across multi-devices
int
gid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
gid
;
i
<
C
;
i
+=
stride
)
{
T
mean
=
means
[
i
]
/
(
*
num_dev
);
T
var
=
variances
[
i
]
/
(
*
num_dev
);
var
=
var
-
mean
*
mean
;
// sync stats
sv_mean_data
[
i
]
=
mean
;
sv_inv_var_data
[
i
]
=
1.0
/
sqrt
(
var
+
epsilon
);
variances
[
i
]
=
var
;
// moving stats
moving_means
[
i
]
=
moving_means
[
i
]
*
momentum
+
mean
*
(
1.
-
momentum
);
moving_variances
[
i
]
=
moving_variances
[
i
]
*
momentum
+
var
*
(
1.
-
momentum
);
}
}
template
<
typename
T
,
framework
::
DataLayout
layout
>
static
__global__
void
KeNormAffine
(
const
T
*
x
,
const
T
*
scale
,
const
T
*
bias
,
const
T
*
mean
,
const
T
*
variance
,
const
double
epsilon
,
const
int
C
,
const
int
M
,
const
int
num
,
T
*
y
)
{
int
gid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
gid
;
i
<
num
;
i
+=
stride
)
{
const
int
c
=
layout
==
framework
::
DataLayout
::
kNCHW
?
(
i
/
M
)
%
C
:
i
%
C
;
y
[
i
]
=
(
x
[
i
]
-
mean
[
c
])
/
sqrt
(
variance
[
c
]
+
epsilon
)
*
scale
[
c
]
+
bias
[
c
];
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
SyncBatchNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
double
epsilon
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
const
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
std
::
string
layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
layout
=
framework
::
StringToDataLayout
(
layout_str
);
const
bool
use_global_stats
=
ctx
.
Attr
<
bool
>
(
"use_global_stats"
);
PADDLE_ENFORCE
(
!
use_global_stats
,
"sync_batch_norm doesn't support to set use_global_stats True. "
,
"Please use batch_norm in this case."
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between 2 and 5"
);
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
layout
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
int
x_numel
=
x
->
numel
();
const
T
*
x_d
=
x
->
data
<
T
>
();
const
T
*
s_d
=
ctx
.
Input
<
Tensor
>
(
"Scale"
)
->
data
<
T
>
();
const
T
*
b_d
=
ctx
.
Input
<
Tensor
>
(
"Bias"
)
->
data
<
T
>
();
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
T
*
y_d
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
mean_data
=
nullptr
;
const
T
*
var_data
=
nullptr
;
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
auto
stream
=
dev_ctx
.
stream
();
auto
*
comm
=
dev_ctx
.
nccl_comm
();
const
int
block
=
512
;
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
paddle
::
memory
::
AllocationPtr
alloc_ptr
{
nullptr
};
if
(
is_test
)
{
const
auto
*
est_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
est_var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
mean_data
=
est_mean
->
data
<
T
>
();
var_data
=
est_var
->
data
<
T
>
();
}
else
{
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
// x, x^2, 1, here 1 is used to calc device num
// device num also can be got from platform::DeviceContextPool
const
int
bytes
=
(
C
*
2
+
1
)
*
sizeof
(
T
);
alloc_ptr
=
allocator
.
Allocate
(
bytes
);
T
*
stats
=
reinterpret_cast
<
T
*>
(
alloc_ptr
->
ptr
());
const
int
threads
=
256
;
int
grid
=
std
::
min
(
C
,
(
max_threads
+
threads
-
1
)
/
threads
);
if
(
layout
==
framework
::
DataLayout
::
kNCHW
)
{
KeLocalStats
<
T
,
threads
,
framework
::
DataLayout
::
kNCHW
><<<
grid
,
threads
,
0
,
stream
>>>
(
x_d
,
N
,
H
*
W
*
D
,
C
,
stats
);
}
else
{
KeLocalStats
<
T
,
threads
,
framework
::
DataLayout
::
kNHWC
><<<
grid
,
threads
,
0
,
stream
>>>
(
x_d
,
N
,
H
*
W
*
D
,
C
,
stats
);
}
Tensor
c_g_st
;
T
*
c_g_st_d
=
c_g_st
.
mutable_data
<
T
>
({
2
*
C
+
1
},
platform
::
CPUPlace
());
auto
gplace
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
memory
::
Copy
(
platform
::
CPUPlace
(),
c_g_st_d
,
gplace
,
stats
,
bytes
,
0
);
int
dtype
=
platform
::
ToNCCLDataType
(
x
->
type
());
// In-place operation
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclAllReduce
(
stats
,
stats
,
2
*
C
+
1
,
static_cast
<
ncclDataType_t
>
(
dtype
),
ncclSum
,
comm
,
stream
));
// moving mean/variance
auto
*
mean_out
=
ctx
.
Output
<
Tensor
>
(
"MeanOut"
);
auto
*
variance_out
=
ctx
.
Output
<
Tensor
>
(
"VarianceOut"
);
T
*
est_mean_data
=
mean_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
est_var_data
=
variance_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
saved_mean
=
ctx
.
Output
<
Tensor
>
(
"SavedMean"
);
auto
*
saved_inv_variance
=
ctx
.
Output
<
Tensor
>
(
"SavedVariance"
);
T
*
sv_mean_data
=
saved_mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
sv_inv_var_data
=
saved_inv_variance
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Note, Input('Mean')/Input('Variance') share variable with
// Output('MeanOut')/Output('VarianceOut')
KeSyncAndMovingStats
<
T
><<<
(
C
+
block
-
1
)
/
block
,
block
,
0
,
stream
>>>
(
stats
,
stats
+
C
,
stats
+
2
*
C
,
C
,
momentum
,
epsilon
,
sv_mean_data
,
sv_inv_var_data
,
est_mean_data
,
est_var_data
);
mean_data
=
sv_mean_data
;
var_data
=
stats
+
C
;
}
int
grid2
=
(
std
::
min
(
x_numel
,
max_threads
)
+
block
-
1
)
/
block
;
if
(
layout
==
framework
::
DataLayout
::
kNCHW
)
{
KeNormAffine
<
T
,
framework
::
DataLayout
::
kNCHW
><<<
grid2
,
block
,
0
,
stream
>>>
(
x_d
,
s_d
,
b_d
,
mean_data
,
var_data
,
epsilon
,
C
,
H
*
W
*
D
,
x_numel
,
y_d
);
}
else
{
KeNormAffine
<
T
,
framework
::
DataLayout
::
kNHWC
><<<
grid2
,
block
,
0
,
stream
>>>
(
x_d
,
s_d
,
b_d
,
mean_data
,
var_data
,
epsilon
,
C
,
H
*
W
*
D
,
x_numel
,
y_d
);
}
}
};
template
<
typename
T
,
const
int
BlockDim
,
framework
::
DataLayout
layout
>
__global__
void
KeBackwardLocalStats
(
const
T
*
dy
,
const
T
*
x
,
const
T
*
means
,
int
N
,
int
M
,
int
C
,
T
*
sum_dy_prod
)
{
typedef
cub
::
BlockReduce
<
double
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
for
(
int
k
=
blockIdx
.
x
;
k
<
C
;
k
+=
gridDim
.
x
)
{
T
sum1
=
0
;
T
sum2
=
0
;
T
mean
=
means
[
k
];
for
(
int
i
=
threadIdx
.
x
;
i
<
N
*
M
;
i
+=
blockDim
.
x
)
{
int
id
=
layout
==
framework
::
DataLayout
::
kNCHW
?
(
i
/
M
)
*
C
*
M
+
k
*
M
+
i
%
M
:
i
*
C
+
k
;
T
g
=
dy
[
id
];
sum1
+=
g
;
sum2
+=
g
*
(
x
[
id
]
-
mean
);
}
__syncthreads
();
T
out
=
BlockReduce
(
temp_storage
).
Reduce
(
sum1
,
cub
::
Sum
());
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
sum_dy_prod
[
k
]
=
out
;
}
out
=
BlockReduce
(
temp_storage
).
Reduce
(
sum2
,
cub
::
Sum
());
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
sum_dy_prod
[
k
+
C
]
=
out
;
}
}
if
(
blockIdx
.
x
==
0
&&
threadIdx
.
x
==
0
)
{
sum_dy_prod
[
2
*
C
]
=
static_cast
<
T
>
(
1.0
);
}
}
template
<
typename
T
,
int
BlockDim
,
framework
::
DataLayout
layout
>
static
__global__
void
KeBNBackwardScaleBias
(
const
T
*
dy
,
const
T
*
x
,
const
T
*
mean
,
const
T
*
inv_variance
,
const
double
epsilon
,
const
int
N
,
const
int
C
,
const
int
HxW
,
T
*
dscale
,
T
*
dbias
)
{
const
int
outer_size
=
C
;
const
int
inner_size
=
N
*
HxW
;
typedef
cub
::
BlockReduce
<
double
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
for
(
int
i
=
blockIdx
.
x
;
i
<
outer_size
;
i
+=
gridDim
.
x
)
{
T
ds_sum
=
static_cast
<
T
>
(
0
);
T
db_sum
=
static_cast
<
T
>
(
0
);
T
inv_var_i
=
inv_variance
[
i
];
T
mean_i
=
mean
[
i
];
for
(
int
j
=
threadIdx
.
x
;
j
<
inner_size
;
j
+=
blockDim
.
x
)
{
const
int
id
=
layout
==
framework
::
DataLayout
::
kNCHW
?
((
j
/
HxW
)
*
C
+
i
)
*
HxW
+
(
j
%
HxW
)
:
j
*
outer_size
+
i
;
ds_sum
+=
dy
[
id
]
*
(
x
[
id
]
-
mean_i
);
db_sum
+=
dy
[
id
];
}
__syncthreads
();
double
os
=
BlockReduce
(
temp_storage
)
.
Reduce
(
static_cast
<
double
>
(
ds_sum
),
cub
::
Sum
());
__syncthreads
();
double
ob
=
BlockReduce
(
temp_storage
)
.
Reduce
(
static_cast
<
double
>
(
db_sum
),
cub
::
Sum
());
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
dscale
[
i
]
=
static_cast
<
T
>
(
os
*
inv_var_i
);
dbias
[
i
]
=
static_cast
<
T
>
(
ob
);
}
__syncthreads
();
}
}
template
<
typename
T
,
framework
::
DataLayout
layout
>
static
__global__
void
KeBNBackwardData
(
const
T
*
dy
,
const
T
*
x
,
const
T
*
beta
,
const
T
*
mean
,
const
T
*
inv_variance
,
const
T
*
g_sum_dy
,
const
T
*
g_sum_dy_prod
,
const
T
*
num_dev
,
const
double
epsilon
,
const
int
C
,
const
int
HxW
,
const
int
num
,
T
*
dx
)
{
int
gid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
T
scale
=
static_cast
<
T
>
(
C
)
/
num
;
T
dev_num
=
num_dev
[
0
];
for
(
int
i
=
gid
;
i
<
num
;
i
+=
stride
)
{
const
int
c
=
layout
==
framework
::
DataLayout
::
kNCHW
?
i
/
HxW
%
C
:
i
%
C
;
T
inv_var
=
inv_variance
[
c
];
T
s_d
=
beta
[
c
];
T
gvar
=
-
1.0
*
(
g_sum_dy_prod
[
c
]
/
dev_num
)
*
s_d
*
inv_var
*
(
inv_var
*
inv_var
);
T
gmean
=
-
1.0
*
(
g_sum_dy
[
c
]
/
dev_num
)
*
s_d
*
inv_var
;
dx
[
i
]
=
dy
[
i
]
*
s_d
*
inv_var
+
gmean
*
scale
+
gvar
*
scale
*
(
x
[
i
]
-
mean
[
c
]);
}
}
// Deriving the Gradient for the Backward Pass of Batch Normalization
// https://kevinzakka.github.io/2016/09/14/batch_normalization/
template
<
typename
DeviceContext
,
typename
T
>
class
SyncBatchNormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use CUDAPlace."
);
double
epsilon
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
const
std
::
string
layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
layout
=
framework
::
StringToDataLayout
(
layout_str
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between 2 and 5"
);
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
layout
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
d_scale
&&
d_bias
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
PADDLE_ENFORCE_EQ
(
scale
->
dims
().
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
scale
->
dims
()[
0
],
C
);
std
::
vector
<
int
>
dims
;
std
::
vector
<
int
>
strides
;
if
(
layout
==
DataLayout
::
kNCHW
)
{
dims
=
{
N
,
C
,
H
,
W
,
D
};
strides
=
{
C
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
}
else
{
dims
=
{
N
,
C
,
H
,
W
,
D
};
strides
=
{
H
*
W
*
C
*
D
,
1
,
W
*
D
*
C
,
D
*
C
,
C
};
}
const
T
*
x_d
=
x
->
data
<
T
>
();
const
T
*
dy_d
=
d_y
->
data
<
T
>
();
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
auto
stream
=
dev_ctx
.
stream
();
auto
*
comm
=
dev_ctx
.
nccl_comm
();
const
T
*
saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
)
->
data
<
T
>
();
const
T
*
saved_inv_var
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
)
->
data
<
T
>
();
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
const
int
bytes
=
(
C
*
2
+
1
)
*
sizeof
(
T
);
auto
alloc_ptr
=
allocator
.
Allocate
(
bytes
);
T
*
stats
=
reinterpret_cast
<
T
*>
(
alloc_ptr
->
ptr
());
const
int
threads
=
256
;
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
int
grid
=
std
::
min
(
C
,
(
max_threads
+
threads
-
1
)
/
threads
);
int
x_numel
=
x
->
numel
();
int
fsize
=
H
*
W
*
D
;
if
(
layout
==
framework
::
DataLayout
::
kNCHW
)
{
KeBackwardLocalStats
<
T
,
threads
,
framework
::
DataLayout
::
kNCHW
><<<
grid
,
threads
,
0
,
stream
>>>
(
dy_d
,
x_d
,
saved_mean
,
N
,
fsize
,
C
,
stats
);
}
else
{
KeBackwardLocalStats
<
T
,
threads
,
framework
::
DataLayout
::
kNHWC
><<<
grid
,
threads
,
0
,
stream
>>>
(
dy_d
,
x_d
,
saved_mean
,
N
,
fsize
,
C
,
stats
);
}
int
dtype
=
platform
::
ToNCCLDataType
(
x
->
type
());
// In-place operation
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclAllReduce
(
stats
,
stats
,
2
*
C
+
1
,
static_cast
<
ncclDataType_t
>
(
dtype
),
ncclSum
,
comm
,
stream
));
const
int
block
=
512
;
int
grid2
=
(
std
::
min
(
x_numel
,
max_threads
)
+
block
-
1
)
/
block
;
if
(
layout
==
framework
::
DataLayout
::
kNCHW
)
{
if
(
d_scale
&&
d_bias
)
{
KeBNBackwardScaleBias
<
T
,
threads
,
framework
::
DataLayout
::
kNCHW
><<<
grid
,
threads
,
0
,
stream
>>>
(
dy_d
,
x_d
,
saved_mean
,
saved_inv_var
,
epsilon
,
N
,
C
,
fsize
,
d_scale
->
data
<
T
>
(),
d_bias
->
data
<
T
>
());
}
if
(
d_x
)
{
KeBNBackwardData
<
T
,
framework
::
DataLayout
::
kNCHW
><<<
grid2
,
block
,
0
,
stream
>>>
(
dy_d
,
x_d
,
scale
->
data
<
T
>
(),
saved_mean
,
saved_inv_var
,
stats
,
stats
+
C
,
stats
+
2
*
C
,
epsilon
,
C
,
fsize
,
x
->
numel
(),
d_x
->
data
<
T
>
());
}
}
else
{
if
(
d_scale
&&
d_bias
)
{
KeBNBackwardScaleBias
<
T
,
threads
,
framework
::
DataLayout
::
kNHWC
><<<
grid
,
threads
,
0
,
stream
>>>
(
dy_d
,
x_d
,
saved_mean
,
saved_inv_var
,
epsilon
,
N
,
C
,
fsize
,
d_scale
->
data
<
T
>
(),
d_bias
->
data
<
T
>
());
}
if
(
d_x
)
{
KeBNBackwardData
<
T
,
framework
::
DataLayout
::
kNHWC
><<<
grid2
,
block
,
0
,
stream
>>>
(
dy_d
,
x_d
,
scale
->
data
<
T
>
(),
saved_mean
,
saved_inv_var
,
stats
,
stats
+
C
,
stats
+
2
*
C
,
epsilon
,
C
,
fsize
,
x
->
numel
(),
d_x
->
data
<
T
>
());
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
sync_batch_norm
,
ops
::
SyncBatchNormKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
SyncBatchNormKernel
<
plat
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
sync_batch_norm_grad
,
ops
::
SyncBatchNormGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
SyncBatchNormGradKernel
<
plat
::
CUDADeviceContext
,
double
>
);
paddle/fluid/platform/device_context.cc
浏览文件 @
1b59bed9
...
...
@@ -57,7 +57,6 @@ DeviceContextPool::DeviceContextPool(
for
(
auto
&
p
:
places
)
{
set
.
insert
(
p
);
}
for
(
auto
&
p
:
set
)
{
if
(
platform
::
is_cpu_place
(
p
))
{
#ifdef PADDLE_WITH_MKLDNN
...
...
@@ -317,6 +316,7 @@ CUDADeviceContext::~CUDADeviceContext() {
eigen_stream_
.
reset
();
eigen_device_
.
reset
();
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
PADDLE_ENFORCE
(
dynload
::
ncclCommDestroy
(
nccl_comm_
));
}
Place
CUDADeviceContext
::
GetPlace
()
const
{
return
place_
;
}
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
1b59bed9
...
...
@@ -265,6 +265,12 @@ class CUDADeviceContext : public DeviceContext {
/*! \brief Return cuda stream in the device context. */
cudaStream_t
stream
()
const
;
/*! \brief Return nccl communicators. */
ncclComm_t
nccl_comm
()
const
{
return
nccl_comm_
;
}
/*! \brief Set nccl communicators. */
void
set_nccl_comm
(
ncclComm_t
comm
)
{
nccl_comm_
=
comm
;
}
template
<
typename
Callback
>
void
RecordEvent
(
cudaEvent_t
ev
,
Callback
callback
)
{
callback
();
...
...
@@ -289,6 +295,13 @@ class CUDADeviceContext : public DeviceContext {
std
::
unique_ptr
<
CublasHandleHolder
>
cublas_handle_
;
std
::
unique_ptr
<
CublasHandleHolder
>
cublas_tensor_core_handle_
;
// NCCL communicator (single process version) for NCCL collective operations.
// NCCL collective operations provides fast collectives over multiple GPUs
// both within and across nodes.
// But, this collectives is used for collectives over multiple GPUs within
// nodes.
ncclComm_t
nccl_comm_
{
nullptr
};
int
compute_capability_
;
int
runtime_version_
;
int
driver_version_
;
...
...
paddle/fluid/platform/init.cc
浏览文件 @
1b59bed9
...
...
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <string.h> // for strdup
#include <algorithm>
#include <memory>
#include <set>
#include <stdexcept>
#include <string>
...
...
@@ -140,6 +142,7 @@ void InitDevices(bool init_p2p, const std::vector<int> devices) {
places
.
emplace_back
(
platform
::
CPUPlace
());
platform
::
DeviceContextPool
::
Init
(
places
);
platform
::
DeviceTemporaryAllocator
::
Init
();
#ifndef PADDLE_WITH_MKLDNN
platform
::
SetNumThreads
(
FLAGS_paddle_num_threads
);
#endif
...
...
paddle/fluid/platform/nccl_helper.h
浏览文件 @
1b59bed9
...
...
@@ -16,9 +16,11 @@
#pragma once
#include <stdio.h>
#include <memory>
#include <string>
#include <thread> // NOLINT
#include <typeindex>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/platform/dynload/nccl.h"
...
...
@@ -78,6 +80,8 @@ struct NCCLContext {
cudaStream_t
stream
()
const
{
return
ctx_
->
stream
();
}
ncclComm_t
comm
()
const
{
return
comm_
;
}
int
device_id
()
const
{
return
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx_
->
GetPlace
()).
device
;
}
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
1b59bed9
...
...
@@ -1230,6 +1230,21 @@ All parameter, weight, gradient are variables in Paddle.
it will save GPU memory and may make the execution faster.
This options is only available in GPU devices.
Default False)DOC"
)
.
def_property
(
"sync_batch_norm"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
sync_batch_norm_
;
},
[](
BuildStrategy
&
self
,
bool
b
)
{
PADDLE_ENFORCE
(
!
self
.
IsFinalized
(),
"BuildStrategy is finlaized."
);
self
.
sync_batch_norm_
=
b
;
},
R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
synchronous batch normalization which synchronizes the mean
and variance through multi-devices in training phase.
Current implementation doesn't support FP16 training and CPU.
And only synchronous on one machine, not all machines.
Default False)DOC"
)
.
def_property
(
"memory_optimize"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
memory_optimize_
;
},
...
...
python/paddle/fluid/compiler.py
浏览文件 @
1b59bed9
...
...
@@ -223,6 +223,9 @@ class CompiledProgram(object):
tps
),
"num_trainers == len(end_points)"
self
.
_build_strategy
.
trainers_endpoints
=
tps
if
self
.
_build_strategy
.
sync_batch_norm
:
self
.
_build_strategy
.
enable_sequential_execution
=
True
self
.
_persistable_vars
=
[]
for
node
in
self
.
_graph
.
nodes
():
if
node
.
is_var
()
and
node
.
var
()
is
not
None
and
node
.
var
().
persistable
()
and
\
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
1b59bed9
...
...
@@ -2922,11 +2922,17 @@ def batch_norm(input,
y_i &
\\
gets
\\
gamma
\\
hat{x_i} +
\\
beta
Args:
input(variable): The
input variable which is a LoDTensor
.
input(variable): The
rank of input variable can be 2, 3, 4, 5
.
act(string, Default None): Activation type, linear|relu|prelu|...
is_test(bool, Default False): Used for training or training.
momentum(float, Default 0.9):
epsilon(float, Default 1e-05):
is_test (bool, Default False): A flag indicating whether it is in
test phrase or not.
momentum(float, Default 0.9): The value used for the moving_mean and
moving_var computation. The updated formula is:
:math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
:math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
Default is 0.9.
epsilon(float, Default 1e-05): A value added to the denominator for
numerical stability. Default is 1e-5.
param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as param_attr. If the Initializer of the param_attr
...
...
@@ -2984,15 +2990,8 @@ def batch_norm(input,
shape
=
param_shape
,
dtype
=
dtype
,
default_initializer
=
Constant
(
1.0
))
# setting stop_gradient=True to reduce computation
if
use_global_stats
and
helper
.
param_attr
.
learning_rate
==
0.
:
scale
.
stop_gradient
=
True
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
is_bias
=
True
)
# setting stop_gradient=True to reduce computation
if
use_global_stats
and
helper
.
bias_attr
.
learning_rate
==
0.
:
bias
.
stop_gradient
=
True
mean
=
helper
.
create_parameter
(
attr
=
ParamAttr
(
...
...
python/paddle/fluid/tests/unittests/test_sync_batch_norm_op.py
0 → 100644
浏览文件 @
1b59bed9
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
os
import
six
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
class
TestSyncBatchNormOpTraining
(
unittest
.
TestCase
):
def
setUp
(
self
):
#self.dtype = np.float32
self
.
dtype
=
np
.
float64
self
.
N
=
32
self
.
C
=
16
self
.
H
=
64
self
.
W
=
32
self
.
dshape
=
[
self
.
N
,
self
.
C
,
self
.
H
,
self
.
W
]
def
build_program
(
self
,
place
,
layout
,
seed
,
sync_bn
=
False
,
only_forward
=
False
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
main
.
random_seed
=
seed
startup
.
random_seed
=
seed
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
data
=
fluid
.
layers
.
data
(
name
=
'input'
,
shape
=
self
.
dshape
,
dtype
=
self
.
dtype
,
append_batch_size
=
False
)
conv
=
fluid
.
layers
.
conv2d
(
input
=
data
,
num_filters
=
32
,
filter_size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'conv2d_weight'
),
bias_attr
=
False
,
use_cudnn
=
False
)
bn
=
fluid
.
layers
.
batch_norm
(
conv
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'bn_scale'
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'bn_bias'
),
moving_mean_name
=
'bn_moving_mean'
,
moving_variance_name
=
'bn_moving_variance'
,
data_layout
=
layout
,
is_test
=
only_forward
)
sigmoid
=
fluid
.
layers
.
sigmoid
(
bn
)
out
=
fluid
.
layers
.
reduce_sum
(
sigmoid
)
if
not
sync_bn
:
out
=
out
/
core
.
get_cuda_device_count
()
if
not
only_forward
:
sgd_opt
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.0
)
sgd_opt
.
backward
(
out
)
return
main
,
startup
,
[
out
,
conv
,
bn
]
def
compare
(
self
,
place
,
layout
,
only_forward
):
seed
=
10
os
.
environ
[
'FLAGS_cudnn_deterministic'
]
=
"1"
data
=
np
.
random
.
random
(
size
=
self
.
dshape
).
astype
(
self
.
dtype
)
*
4.
-
2
# Single-GPU, N = 32 per GPU
main
,
startup
,
outs
=
self
.
build_program
(
place
,
layout
,
seed
,
False
,
only_forward
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
fetch_names
=
[
v
.
name
for
v
in
outs
]
+
[
'bn_moving_mean'
,
'bn_moving_variance'
,
'bn_scale'
,
'bn_bias'
]
if
not
only_forward
:
others
=
[
'batch_norm_0.tmp_0'
,
'batch_norm_0.tmp_1'
,
'bn_scale@GRAD'
,
'bn_bias@GRAD'
,
'batch_norm_0.tmp_2@GRAD'
,
'conv2d_0.tmp_0@GRAD'
]
fetch_names
+=
others
bn_fetches
=
exe
.
run
(
program
=
main
,
feed
=
{
'input'
:
data
},
fetch_list
=
fetch_names
)
#####################################################################
# Multi-GPUs, self.N / core.get_cuda_device_count() per GPU
main
,
startup
,
outs
=
self
.
build_program
(
place
,
layout
,
seed
,
True
,
only_forward
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
fetch_names
=
[
v
.
name
for
v
in
outs
]
+
[
'bn_moving_mean'
,
'bn_moving_variance'
,
'bn_scale'
,
'bn_bias'
]
if
not
only_forward
:
others
=
[
'batch_norm_0.tmp_0'
,
'batch_norm_0.tmp_1'
,
'bn_scale@GRAD'
,
'bn_bias@GRAD'
,
'batch_norm_0.tmp_2@GRAD'
,
'conv2d_0.tmp_0@GRAD'
]
fetch_names
+=
others
for
nm
in
fetch_names
:
fv
=
fluid
.
framework
.
_get_var
(
str
(
nm
),
program
=
main
)
fv
.
persistable
=
True
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
sync_batch_norm
=
True
build_strategy
.
enable_inplace
=
False
build_strategy
.
memory_optimize
=
False
comp_prog
=
compiler
.
CompiledProgram
(
main
).
with_data_parallel
(
outs
[
0
].
name
if
not
only_forward
else
None
,
build_strategy
=
build_strategy
)
sync_bn_fetches
=
exe
.
run
(
program
=
comp_prog
,
feed
=
{
'input'
:
data
},
fetch_list
=
fetch_names
)
for
i
in
six
.
moves
.
xrange
(
1
,
len
(
sync_bn_fetches
)):
bn_val
=
bn_fetches
[
i
]
sync_bn_val
=
sync_bn_fetches
[
i
]
if
sync_bn_val
.
shape
!=
bn_val
.
shape
:
sync_bn_val
=
sync_bn_val
[:
bn_val
.
shape
[
0
]]
self
.
assertTrue
(
np
.
allclose
(
bn_val
,
sync_bn_val
,
atol
=
1e-3
),
"Output ("
+
fetch_names
[
i
]
+
") has diff.
\n
"
+
"
\n
BN "
+
str
(
bn_val
)
+
"
\n
"
+
"Sync BN "
+
str
(
sync_bn_val
))
def
test_train
(
self
):
if
not
core
.
is_compiled_with_cuda
():
return
places
=
[
core
.
CUDAPlace
(
0
)]
for
place
in
places
:
for
layout
in
[
"NCHW"
,
"NHWC"
]:
self
.
compare
(
place
,
layout
,
False
)
def
test_infer
(
self
):
if
not
core
.
is_compiled_with_cuda
():
return
places
=
[
core
.
CUDAPlace
(
0
)]
for
place
in
places
:
for
layout
in
[
"NCHW"
,
"NHWC"
]:
self
.
compare
(
place
,
layout
,
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录