Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
19d78f67
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
19d78f67
编写于
2月 22, 2019
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
polish
test=develop
上级
32d5a160
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
7 addition
and
242 deletion
+7
-242
paddle/fluid/framework/details/all_reduce_deps_pass.cc
paddle/fluid/framework/details/all_reduce_deps_pass.cc
+2
-2
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+0
-22
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
...le/fluid/framework/details/parallel_ssa_graph_executor.cc
+0
-5
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
+0
-1
paddle/fluid/framework/details/sequential_execution_pass.cc
paddle/fluid/framework/details/sequential_execution_pass.cc
+2
-2
paddle/fluid/framework/ir/graph.cc
paddle/fluid/framework/ir/graph.cc
+3
-0
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+0
-6
python/paddle/fluid/contrib/slim/unitest/test_quantization_pass.py
...ddle/fluid/contrib/slim/unitest/test_quantization_pass.py
+0
-204
未找到文件。
paddle/fluid/framework/details/all_reduce_deps_pass.cc
浏览文件 @
19d78f67
...
...
@@ -50,7 +50,7 @@ std::unique_ptr<ir::Graph> AllReduceDepsPass::ApplyImpl(
std
::
unordered_map
<
std
::
string
,
int
>
vars
;
// TODO(gongwb): use graph topology sort to find the order of operators.
// Note that must assert topology sort is stable
auto
&
ops
=
Get
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
);
auto
&
ops
=
graph
->
Get
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
);
for
(
auto
*
op_desc
:
ops
)
{
auto
outputs
=
op_desc
->
Outputs
();
for
(
auto
&
o_it
:
outputs
)
{
...
...
@@ -120,4 +120,4 @@ std::unique_ptr<ir::Graph> AllReduceDepsPass::ApplyImpl(
REGISTER_PASS
(
all_reduce_deps_pass
,
paddle
::
framework
::
details
::
AllReduceDepsPass
)
.
Require
Pass
Attr
(
paddle
::
framework
::
details
::
kAllOpDescs
);
.
Require
Graph
Attr
(
paddle
::
framework
::
details
::
kAllOpDescs
);
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
19d78f67
...
...
@@ -183,7 +183,6 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
// Create a default one if not finalized by user.
CreatePassesFromStrategy
(
false
);
std
::
vector
<
OpDesc
*>
all_ops
=
graph
->
OriginProgram
().
Block
(
0
).
AllOps
();
for
(
std
::
shared_ptr
<
ir
::
Pass
>
&
pass
:
pass_builder_
->
AllPasses
())
{
if
(
IsMultiDevPass
(
pass
->
Type
()))
{
pass
->
Erase
(
kPlaces
);
...
...
@@ -201,33 +200,12 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass
->
Erase
(
"nccl_ctxs"
);
pass
->
SetNotOwned
<
platform
::
NCCLContextMap
>
(
"nccl_ctxs"
,
nctx
);
#endif
}
else
if
(
pass
->
Type
()
==
"memory_optimize_pass"
)
{
if
(
graph
->
Has
(
kAllOpDescs
))
{
graph
->
Erase
(
kAllOpDescs
);
}
graph
->
SetNotOwned
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
&
all_ops
);
pass
->
Erase
(
kAllOpDescs
);
pass
->
SetNotOwned
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
&
all_ops
);
}
else
if
(
pass
->
Type
()
==
"sequential_execution_pass"
)
{
LOG
(
INFO
)
<<
"set enable_sequential_execution:"
<<
enable_sequential_execution_
;
pass
->
Erase
(
kAllOpDescs
);
pass
->
SetNotOwned
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
&
all_ops
);
}
else
if
(
pass
->
Type
()
==
"all_reduce_deps_pass"
)
{
LOG
(
INFO
)
<<
"SeqOnlyAllReduceOps:"
<<
SeqOnlyAllReduceOps
(
*
this
)
<<
", num_trainers:"
<<
num_trainers_
;
pass
->
Erase
(
kAllOpDescs
);
pass
->
SetNotOwned
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
&
all_ops
);
}
else
if
(
pass
->
Type
()
==
"inplace_pass"
)
{
if
(
graph
->
Has
(
kAllOpDescs
))
{
graph
->
Erase
(
kAllOpDescs
);
}
graph
->
SetNotOwned
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
&
all_ops
);
}
else
if
(
pass
->
Type
()
==
"fuse_relu_depthwise_conv_pass"
)
{
if
(
!
use_cuda
)
{
LOG
(
WARNING
)
<<
"fuse_relu_depthwise_conv_pass is only supported on "
...
...
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
浏览文件 @
19d78f67
...
...
@@ -81,7 +81,6 @@ ParallelSSAGraphExecutor::ParallelSSAGraphExecutor(
local_scopes_
(
std
::
move
(
local_scopes
)),
pool_
(
places
.
size
()
>=
2
?
new
::
ThreadPool
(
places
.
size
())
:
nullptr
),
places_
(
std
::
move
(
places
)),
main_prog_
(
graph
->
OriginProgram
()),
// TODO(Yancey1989): Copying graphs is not safely since it deleted the
// attrs.
graphs_
(
SeparateMultiDevicesGraph
(
graph
))
{
...
...
@@ -89,10 +88,6 @@ ParallelSSAGraphExecutor::ParallelSSAGraphExecutor(
auto
seq_allreduce_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"all_reduce_deps_pass"
);
seq_allreduce_pass
->
Erase
(
details
::
kAllOpDescs
);
seq_allreduce_pass
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
details
::
kAllOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
main_prog_
.
Block
(
0
).
AllOps
()));
for
(
size_t
i
=
0
;
i
<
graphs_
.
size
();
++
i
)
{
graphs_
[
i
]
=
seq_allreduce_pass
->
Apply
(
std
::
move
(
graphs_
[
i
]));
}
...
...
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
浏览文件 @
19d78f67
...
...
@@ -46,7 +46,6 @@ class ParallelSSAGraphExecutor : public SSAGraphExecutor {
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
{
nullptr
};
std
::
vector
<
platform
::
Place
>
places_
;
framework
::
ProgramDesc
main_prog_
;
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs_
;
std
::
vector
<
std
::
unique_ptr
<
details
::
ThreadedSSAGraphExecutor
>>
executors_
;
...
...
paddle/fluid/framework/details/sequential_execution_pass.cc
浏览文件 @
19d78f67
...
...
@@ -40,7 +40,7 @@ std::unique_ptr<ir::Graph> SequentialExecutionPass::ApplyImpl(
static
std
::
unordered_set
<
std
::
string
>
skip_dist_ops
{
"send"
,
"recv"
,
"send_barrier"
,
"fetch_barrier"
};
auto
&
ops
=
Get
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
);
auto
&
ops
=
graph
->
Get
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
);
std
::
vector
<
ir
::
Node
*>
op_node_list
;
op_node_list
.
reserve
(
ops
.
size
());
...
...
@@ -107,4 +107,4 @@ std::unique_ptr<ir::Graph> SequentialExecutionPass::ApplyImpl(
REGISTER_PASS
(
sequential_execution_pass
,
paddle
::
framework
::
details
::
SequentialExecutionPass
)
.
Require
Pass
Attr
(
paddle
::
framework
::
details
::
kAllOpDescs
);
.
Require
Graph
Attr
(
paddle
::
framework
::
details
::
kAllOpDescs
);
paddle/fluid/framework/ir/graph.cc
浏览文件 @
19d78f67
...
...
@@ -76,6 +76,9 @@ std::map<std::string, std::vector<ir::Node *>> Graph::InitFromProgram(
var
->
inputs
.
push_back
(
node
);
}
}
Set
<
const
std
::
vector
<
OpDesc
*>>
(
details
::
kAllOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
program
.
Block
(
0
).
AllOps
()));
return
var_nodes
;
}
...
...
paddle/fluid/framework/ir/graph.h
浏览文件 @
19d78f67
...
...
@@ -195,12 +195,6 @@ class Graph {
return
nullptr
;
}
// Returns reference to the original program.
// WARN: After a series of passes, the current graph can be quite
// different from OriginProgram. Caller shouldn't assume much from
// the returned OriginProgram.
const
ProgramDesc
&
OriginProgram
()
const
{
return
program_
;
}
// This method takes ownership of `node`.
ir
::
Node
*
AddNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
==
node_set_
.
end
());
...
...
python/paddle/fluid/contrib/slim/unitest/test_quantization_pass.py
已删除
100644 → 0
浏览文件 @
32d5a160
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
unittest
import
random
import
numpy
as
np
import
paddle.fluid
as
fluid
import
six
from
paddle.fluid.framework
import
Program
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid.contrib.slim.quantization
import
QuantizationTransformPass
from
paddle.fluid
import
core
def
linear_fc
(
num
):
data
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
data
for
_
in
six
.
moves
.
xrange
(
num
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
128
,
act
=
'relu'
)
fc
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
)
loss
=
fluid
.
layers
.
softmax_with_cross_entropy
(
fc
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
residual_block
(
num
):
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
bias_attr
=
False
):
tmp
=
fluid
.
layers
.
conv2d
(
input
=
input
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
bias_attr
=
bias_attr
)
return
fluid
.
layers
.
batch_norm
(
input
=
tmp
,
act
=
act
)
data
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
data
for
_
in
six
.
moves
.
xrange
(
num
):
conv
=
conv_bn_layer
(
hidden
,
16
,
3
,
1
,
1
,
act
=
None
,
bias_attr
=
True
)
short
=
conv_bn_layer
(
hidden
,
16
,
1
,
1
,
0
,
act
=
None
)
hidden
=
fluid
.
layers
.
elementwise_add
(
x
=
conv
,
y
=
short
,
act
=
'relu'
)
fc
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
)
loss
=
fluid
.
layers
.
softmax_with_cross_entropy
(
fc
,
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestQuantizationTransformPass
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
quantizable_op_and_inputs
=
{
'conv2d'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d'
:
[
'Input'
,
'Filter'
],
'mul'
:
[
'X'
,
'Y'
]
}
self
.
quantizable_grad_op_inputs
=
{
'conv2d_grad'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d_grad'
:
[
'Input'
,
'Filter'
],
'mul_grad'
:
[
'X'
,
'Y'
]
}
def
check_program
(
self
,
transform_pass
,
program
):
quantized_ops
=
set
()
for
block
in
program
.
blocks
:
for
op
in
block
.
ops
:
# check forward
if
op
.
type
in
self
.
quantizable_op_and_inputs
:
for
arg_name
in
op
.
input_arg_names
:
self
.
assertTrue
(
arg_name
.
endswith
(
'.quantized.dequantized'
))
quantized_ops
.
add
(
arg_name
)
for
op
in
block
.
ops
:
# check backward
if
op
.
type
in
self
.
quantizable_grad_op_inputs
:
for
pname
in
self
.
quantizable_grad_op_inputs
[
op
.
type
]:
arg_name
=
op
.
input
(
pname
)[
0
]
self
.
assertTrue
(
arg_name
.
endswith
(
'.quantized.dequantized'
))
self
.
assertTrue
(
arg_name
in
quantized_ops
)
def
linear_fc_quant
(
self
,
quant_type
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
linear_fc
(
3
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
graph
=
IrGraph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
program_exe
=
exe
,
activation_quantize_type
=
quant_type
)
transform_pass
.
apply
(
graph
)
marked_nodes
=
set
()
for
op
in
graph
.
all_ops
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
graph
.
draw
(
'.'
,
'quantize_fc_'
+
quant_type
,
marked_nodes
)
program
=
graph
.
to_program
()
self
.
check_program
(
transform_pass
,
program
)
val_graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
val_marked_nodes
=
set
()
for
op
in
val_graph
.
all_ops
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
val_marked_nodes
.
add
(
op
)
val_graph
.
draw
(
'.'
,
'val_fc_'
+
quant_type
,
val_marked_nodes
)
def
test_linear_fc_quant_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
self
.
linear_fc_quant
(
'abs_max'
)
def
test_linear_fc_quant_range_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_range_abs_max'
self
.
linear_fc_quant
(
'range_abs_max'
)
def
residual_block_quant
(
self
,
quant_type
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
residual_block
(
2
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
graph
=
IrGraph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
program_exe
=
exe
,
activation_quantize_type
=
quant_type
)
transform_pass
.
apply
(
graph
)
marked_nodes
=
set
()
for
op
in
graph
.
all_ops
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
graph
.
draw
(
'.'
,
'quantize_residual_'
+
quant_type
,
marked_nodes
)
program
=
graph
.
to_program
()
self
.
check_program
(
transform_pass
,
program
)
val_graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
val_marked_nodes
=
set
()
for
op
in
val_graph
.
all_ops
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
val_marked_nodes
.
add
(
op
)
val_graph
.
draw
(
'.'
,
'val_residual_'
+
quant_type
,
val_marked_nodes
)
def
test_residual_block_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_abs_max'
self
.
residual_block_quant
(
'abs_max'
)
def
test_residual_block_range_abs_max
(
self
):
self
.
act_quant_op_type
=
'fake_quantize_range_abs_max'
self
.
residual_block_quant
(
'range_abs_max'
)
def
test_execute_graph
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
linear_fc
(
3
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.0001
)
opt
.
minimize
(
loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
graph
=
IrGraph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
exe
.
run
(
startup
)
binary
=
fluid
.
CompiledProgram
(
graph
.
graph
).
with_data_parallel
(
loss_name
=
loss
.
name
)
for
i
in
range
(
10
):
loss_val
=
exe
.
run
(
binary
,
feed
=
{
'image'
:
np
.
ones
(
[
32
,
784
],
dtype
=
np
.
float32
),
'label'
:
np
.
ones
(
[
32
,
1
],
dtype
=
np
.
int64
)
},
fetch_list
=
[
loss
])
if
i
==
0
:
start_loss
=
np
.
sum
(
loss_val
)
elif
i
==
9
:
end_loss
=
np
.
sum
(
loss_val
)
self
.
assertLess
(
end_loss
,
start_loss
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录