提交 18dcc1c0 编写于 作者: D dangqingqing

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into bp_test

#!/bin/bash
set -e
readonly VERSION="3.8"
version=$(clang-format -version)
if ! [[ $version == *"$VERSION"* ]]; then
echo "clang-format version check failed."
echo "a version contains '$VERSION' is needed, but get '$version'"
echo "you can install the right version, and make an soft-link to '\$PATH' env"
exit -1
fi
clang-format $@
...@@ -19,10 +19,10 @@ ...@@ -19,10 +19,10 @@
- id: end-of-file-fixer - id: end-of-file-fixer
- repo: local - repo: local
hooks: hooks:
- id: clang-format - id: clang-format-with-version-check
name: clang-format name: clang-format
description: Format files with ClangFormat. description: Format files with ClangFormat.
entry: clang-format -i entry: ./.clang_format.hook -i
language: system language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto)$ files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto)$
- repo: https://github.com/PaddlePaddle/pre-commit-golang - repo: https://github.com/PaddlePaddle/pre-commit-golang
......
...@@ -36,8 +36,8 @@ include(simd) ...@@ -36,8 +36,8 @@ include(simd)
################################ Configurations ####################################### ################################ Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND}) option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND}) option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." OFF) option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." ${AVX_FOUND})
option(WITH_MKLML "Compile PaddlePaddle with mklml package." OFF) option(WITH_MKLML "Compile PaddlePaddle with mklml package." ${AVX_FOUND})
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON) option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON) option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON)
option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON) option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON)
......
...@@ -34,9 +34,6 @@ RUN apt-get update && \ ...@@ -34,9 +34,6 @@ RUN apt-get update && \
net-tools && \ net-tools && \
apt-get clean -y apt-get clean -y
# paddle is using numpy.flip, which is introduced since 1.12.0
RUN pip --no-cache-dir install 'numpy>=1.12.0'
# Install Go and glide # Install Go and glide
RUN wget -qO- https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz | \ RUN wget -qO- https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \ tar -xz -C /usr/local && \
...@@ -58,33 +55,22 @@ RUN localedef -i en_US -f UTF-8 en_US.UTF-8 ...@@ -58,33 +55,22 @@ RUN localedef -i en_US -f UTF-8 en_US.UTF-8
# FIXME: due to temporary ipykernel dependency issue, specify ipykernel jupyter # FIXME: due to temporary ipykernel dependency issue, specify ipykernel jupyter
# version util jupyter fixes this issue. # version util jupyter fixes this issue.
RUN pip install --upgrade pip && \ RUN pip install --upgrade pip && \
pip install -U 'protobuf==3.1.0' && \ pip install -U wheel && \
pip install -U wheel pillow BeautifulSoup && \
pip install -U docopt PyYAML sphinx && \ pip install -U docopt PyYAML sphinx && \
pip install -U sphinx-rtd-theme==0.1.9 recommonmark && \ pip install -U sphinx-rtd-theme==0.1.9 recommonmark
pip install pre-commit 'requests==2.9.2' 'ipython==5.3.0' && \
RUN pip install pre-commit 'ipython==5.3.0' && \
pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \ pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip install opencv-python rarfile 'scipy>=0.19.0' 'nltk>=3.2.2' pip install opencv-python
COPY ./python/requirements.txt /root/
RUN pip install -r /root/requirements.txt
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use # To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2 # the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
RUN apt-get install -y libssl-dev libffi-dev RUN apt-get install -y libssl-dev libffi-dev
RUN pip install certifi urllib3[secure] RUN pip install certifi urllib3[secure]
# TODO(qijun) The template library Eigen doesn't work well with GCC 5
# coming with the default Docker image, so we switch to use GCC 4.8
# by default. And I will check Eigen library later.
RUN ln -sf gcc-4.8 /usr/bin/gcc && \
ln -sf gcc-ar-4.8 /usr/bin/gcc-ar && \
ln -sf gcc-nm-4.8 /usr/bin/gcc-nm && \
ln -sf gcc-ranlib-4.8 /usr/bin/gcc-ranlib && \
ln -sf gcc-4.8 /usr/bin/x86_64-linux-gnu-gcc && \
ln -sf gcc-ar-4.8 /usr/bin/x86_64-linux-gnu-gcc-ar && \
ln -sf gcc-nm-4.8 /usr/bin/x86_64-linux-gnu-gcc-nm && \
ln -sf gcc-ranlib-4.8 /usr/bin/x86_64-linux-gnu-gcc-ranlib && \
ln -sf g++-4.8 /usr/bin/g++ && \
ln -sf g++-4.8 /usr/bin/x86_64-linux-gnu-g++
# Install woboq_codebrowser to /woboq # Install woboq_codebrowser to /woboq
RUN git clone https://github.com/woboq/woboq_codebrowser /woboq && \ RUN git clone https://github.com/woboq/woboq_codebrowser /woboq && \
......
...@@ -73,10 +73,18 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR}) ...@@ -73,10 +73,18 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas) # linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)
SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c) SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c)
FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";")
ADD_LIBRARY(cblas STATIC ${dummyfile}) IF(${CBLAS_PROVIDER} MATCHES MKL)
ADD_LIBRARY(cblas SHARED ${dummyfile})
ELSE()
ADD_LIBRARY(cblas STATIC ${dummyfile})
ENDIF()
TARGET_LINK_LIBRARIES(cblas ${CBLAS_LIBRARIES}) TARGET_LINK_LIBRARIES(cblas ${CBLAS_LIBRARIES})
IF(NOT ${CBLAS_FOUND}) IF(NOT ${CBLAS_FOUND})
ADD_DEPENDENCIES(cblas extern_openblas) ADD_DEPENDENCIES(cblas extern_openblas)
LIST(APPEND external_project_dependencies cblas) LIST(APPEND external_project_dependencies cblas)
ELSE()
IF("${CBLAS_PROVIDER}" STREQUAL "MKLML")
ADD_DEPENDENCIES(cblas mklml)
ENDIF()
ENDIF(NOT ${CBLAS_FOUND}) ENDIF(NOT ${CBLAS_FOUND})
...@@ -9,13 +9,6 @@ function(CheckCompilerCXX11Flag) ...@@ -9,13 +9,6 @@ function(CheckCompilerCXX11Flag)
if(${CMAKE_CXX_COMPILER_VERSION} VERSION_LESS 4.8) if(${CMAKE_CXX_COMPILER_VERSION} VERSION_LESS 4.8)
message(FATAL_ERROR "Unsupported GCC version. GCC >= 4.8 required.") message(FATAL_ERROR "Unsupported GCC version. GCC >= 4.8 required.")
endif() endif()
if(NOT ANDROID)
# TODO(qijun) gcc 4.9 or later versions raise SEGV due to the optimization problem.
# Use Debug mode instead for now.
if(CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.9 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 4.9)
set(CMAKE_BUILD_TYPE "Debug" CACHE STRING "" FORCE)
endif()
endif()
elseif(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" OR CMAKE_CXX_COMPILER_ID STREQUAL "Clang") elseif(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" OR CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
# cmake >= 3.0 compiler id "AppleClang" on Mac OS X, otherwise "Clang" # cmake >= 3.0 compiler id "AppleClang" on Mac OS X, otherwise "Clang"
# Apple Clang is a different compiler than upstream Clang which havs different version numbers. # Apple Clang is a different compiler than upstream Clang which havs different version numbers.
...@@ -160,7 +153,7 @@ set(CUDA_PROPAGATE_HOST_FLAGS OFF) ...@@ -160,7 +153,7 @@ set(CUDA_PROPAGATE_HOST_FLAGS OFF)
# Release/Debug flags set by cmake. Such as -O3 -g -DNDEBUG etc. # Release/Debug flags set by cmake. Such as -O3 -g -DNDEBUG etc.
# So, don't set these flags here. # So, don't set these flags here.
LIST(APPEND CUDA_NVCC_FLAGS -std=c++11 --default-stream per-thread) LIST(APPEND CUDA_NVCC_FLAGS -std=c++11)
LIST(APPEND CUDA_NVCC_FLAGS --use_fast_math) LIST(APPEND CUDA_NVCC_FLAGS --use_fast_math)
if(CMAKE_BUILD_TYPE STREQUAL "Debug") if(CMAKE_BUILD_TYPE STREQUAL "Debug")
......
# Alalysis of large model distributed training in Paddle
***NOTE: This is only some note for how we implemeted this scheme in V1, not a new design.***
## What is it
We often encounter cases that the embedding layer parameters(sparse) are so large that we can not store it in the trainer's memory when training. So we need to put them to several servers, and fetch them row by row instead of fetch all of the parameters.
## How to use
Specify command-line argument like `--loadsave_parameters_in_pserver=true --ports_num_for_sparse=1 --use_old_updater=1` when starting the paddle trainer. And also add something like `--ports_num_for_sparse=1 --pserver_num_threads=5` when starting pserver processes.
Accrodingly, configure your embedding layers like:
```python
SPARSE_REMOTE=True
w1 = data_layer(name="w1", size=dict_size)
emb1 = embedding_layer(input=w1, size=32, param_attr=ParameterAttribute(sparse_update=SPARSE_REMOTE))
w2 = data_layer(name="w2", size=dict_size)
emb2 = embedding_layer(input=w2, size=32, param_attr=ParameterAttribute(sparse_update=SPARSE_REMOTE))
...
```
## Implementation details
```c++
enum MatType {
MAT_NORMAL,
MAT_NORMAL_SHARED,
MAT_VALUE_SHARED,
MAT_SPARSE_ROW_IDS,
MAT_SPARSE_ROW_AUTO_GROW,
MAT_CACHE_ROW,
MAT_SPARSE_ROW,
MAT_SPARSE_ROW_PREFETCH,
MAT_SPARSE_ROW_PREFETCH_FULL_SIZE,
};
```
`MAT_SPARSE_ROW_PREFETCH` is what we use when configured to fetch only row of matrix when training.
In `trainer_internal.cpp:L93 trainOneBatch`:
```c++
if (config_->getOptConfig().use_sparse_remote_updater()) {
REGISTER_TIMER("prefetch");
gradientMachine_->prefetch(inArgs);
parameterUpdater_->getParametersRemote();
}
```
When doing actual network forward and backward, at the beginning of each batch, the trainer will try to download one row of data from pserver.
In `trainer/RemoteParameterUpdater.cpp`: `parameterUpdater_->getParametersRemote();`:
```c++
if (fullSize) {
...
} else {
getParams = [&] {
parameterClient_->getParameterSparse(
/* recvParameterType= */ PARAMETER_VALUE, sendBackParameterType);
};
applyL1 = [](Parameter& para, real decayRate) {
para.getMat(PARAMETER_VALUE)->applyL1(/*lr=*/1.0f, decayRate);
};
}
```
Calling `parameterClient_->getParameterSparse` will do remote call to pserver's `getParameterSparse`:
```c++
void ParameterServer2::getParameterSparse(const SendParameterRequest& request,
std::vector<Buffer>& inputBuffers,
SendParameterResponse* response,
std::vector<Buffer>* outputBuffers) {
(void)inputBuffers;
auto& buffer = *readWriteBuffer_;
size_t numReals = 0;
for (const auto& block : request.blocks()) {
numReals += getParameterConfig(block).dims(1);
}
buffer.resize(numReals);
VLOG(3) << "pserver: getParameterSparse, numReals=" << numReals;
ReadLockGuard guard(parameterMutex_);
size_t offset = 0;
for (const auto& block : request.blocks()) {
size_t width = getParameterConfig(block).dims(1);
Buffer buf = {buffer.data() + offset, width};
int type = request.send_back_parameter_type();
sendBackParameterSparse(block, type, response, &buf, width, outputBuffers);
offset += width;
}
}
```
`getParameterConfig(block).dims(1)` returns the width of the current "parameter block"(a shard of parameter object),
then `getParameterSparse` remote call returns only one row of data to the client.
...@@ -101,6 +101,7 @@ if use_mkldnn ...@@ -101,6 +101,7 @@ if use_mkldnn
5.**Argument**里添加两个`MkldnnMatrixPtr`,取名为`mkldnnValue``mkldnnGrad`,用于存放`MkldnnLayer`会用到的memory buffer。 并且添加函数cvt(会修改为一个更加合适的函数名),用于处理"CPU device"和"MKL-DNN device"之间memory的相互转化。 5.**Argument**里添加两个`MkldnnMatrixPtr`,取名为`mkldnnValue``mkldnnGrad`,用于存放`MkldnnLayer`会用到的memory buffer。 并且添加函数cvt(会修改为一个更加合适的函数名),用于处理"CPU device"和"MKL-DNN device"之间memory的相互转化。
6. 在父类`Layer`中的`getOutput`函数中添加一段逻辑,用于判断`deviceId`,并针对device在MKL-DNN和CPU之间不统一的情况,做一个前期转换。 也就是调用`Argument`的cvt函数把output统一到需要的device上。 6. 在父类`Layer`中的`getOutput`函数中添加一段逻辑,用于判断`deviceId`,并针对device在MKL-DNN和CPU之间不统一的情况,做一个前期转换。 也就是调用`Argument`的cvt函数把output统一到需要的device上。
7. 在原来的`FLAGS`中添加一个`use_mkldnn`的flag,用于选择是否使用MKL-DNN的相关功能。 7. 在原来的`FLAGS`中添加一个`use_mkldnn`的flag,用于选择是否使用MKL-DNN的相关功能。
8. 关于MKLDNN参数的保存。由于MKLDNN参数的格式与PaddlePaddle原有的格式存在不一样的情况,所以需要在保存参数时同时保存该格式信息。目前准备扩展[Header](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/parameter/Parameter.h#L247)里面的`int32_t version`。这个值不管是在v1还是在v2里面,一直保存的是0,所以可以充分利用这个信息,定义一个枚举处理所有MKLDNN的参数格式,从而`MKLDNNLayer`就可以从输入的参数中获取需要的格式信息。
## References ## References
......
...@@ -68,7 +68,7 @@ As a simple example, consider the following: ...@@ -68,7 +68,7 @@ As a simple example, consider the following:
1. **BLAS Dependencies(optional)** 1. **BLAS Dependencies(optional)**
CMake will search BLAS libraries from system. If not found, OpenBLAS will be downloaded, built and installed automatically. CMake will search BLAS libraries from the system. If not found, OpenBLAS will be downloaded, built and installed automatically.
To utilize preinstalled BLAS, you can simply specify MKL, OpenBLAS or ATLAS via `MKL_ROOT`, `OPENBLAS_ROOT` or `ATLAS_ROOT`. To utilize preinstalled BLAS, you can simply specify MKL, OpenBLAS or ATLAS via `MKL_ROOT`, `OPENBLAS_ROOT` or `ATLAS_ROOT`.
```bash ```bash
...@@ -131,9 +131,9 @@ As a simple example, consider the following: ...@@ -131,9 +131,9 @@ As a simple example, consider the following:
To build GPU version, you will need the following installed: To build GPU version, you will need the following installed:
1. a CUDA-capable GPU 1. a CUDA-capable GPU
2. A supported version of Linux with a gcc compiler and toolchain 2. A supported version of Linux with a GCC compiler and toolchain
3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads) 3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads)
4. NVIDIA cuDNN Library (availabel at https://developer.nvidia.com/cudnn) 4. NVIDIA cuDNN Library (available at https://developer.nvidia.com/cudnn)
The CUDA development environment relies on tight integration with the host development environment, The CUDA development environment relies on tight integration with the host development environment,
including the host compiler and C runtime libraries, and is therefore only supported on including the host compiler and C runtime libraries, and is therefore only supported on
...@@ -172,6 +172,7 @@ export PATH=<path to install>/bin:$PATH ...@@ -172,6 +172,7 @@ export PATH=<path to install>/bin:$PATH
# install PaddlePaddle Python modules. # install PaddlePaddle Python modules.
sudo pip install <path to install>/opt/paddle/share/wheels/*.whl sudo pip install <path to install>/opt/paddle/share/wheels/*.whl
``` ```
## <span id="centos">Build on Centos 7</span> ## <span id="centos">Build on Centos 7</span>
### Install Dependencies ### Install Dependencies
...@@ -192,9 +193,9 @@ sudo pip install <path to install>/opt/paddle/share/wheels/*.whl ...@@ -192,9 +193,9 @@ sudo pip install <path to install>/opt/paddle/share/wheels/*.whl
To build GPU version, you will need the following installed: To build GPU version, you will need the following installed:
1. a CUDA-capable GPU 1. a CUDA-capable GPU
2. A supported version of Linux with a gcc compiler and toolchain 2. A supported version of Linux with a GCC compiler and toolchain
3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads) 3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads)
4. NVIDIA cuDNN Library (availabel at https://developer.nvidia.com/cudnn) 4. NVIDIA cuDNN Library (available at https://developer.nvidia.com/cudnn)
The CUDA development environment relies on tight integration with the host development environment, The CUDA development environment relies on tight integration with the host development environment,
including the host compiler and C runtime libraries, and is therefore only supported on including the host compiler and C runtime libraries, and is therefore only supported on
...@@ -222,7 +223,7 @@ mkdir build && cd build ...@@ -222,7 +223,7 @@ mkdir build && cd build
``` ```
Finally, you can build and install PaddlePaddle: Finally, you can build and install PaddlePaddle:
```bash ```bash
# you can add build option here, such as: # you can add build option here, such as:
cmake3 .. -DCMAKE_INSTALL_PREFIX=<path to install> cmake3 .. -DCMAKE_INSTALL_PREFIX=<path to install>
......
...@@ -146,3 +146,19 @@ paddle_error paddle_gradient_machine_randomize_param( ...@@ -146,3 +146,19 @@ paddle_error paddle_gradient_machine_randomize_param(
m->machine->randParameters(); m->machine->randParameters();
return kPD_NO_ERROR; return kPD_NO_ERROR;
} }
paddle_error paddle_gradient_machine_get_layer_output(
paddle_gradient_machine machine,
const char* layerName,
paddle_arguments args) {
auto m = cast(machine);
auto out = paddle::capi::cast<paddle::capi::CArguments>(args);
if (m == nullptr || layerName == nullptr || out == nullptr ||
m->machine == nullptr) {
return kPD_NULLPTR;
}
auto layerOutput = m->machine->getLayerOutput(layerName);
out->args.push_back(layerOutput);
return kPD_NO_ERROR;
}
...@@ -39,7 +39,11 @@ PD_API paddle_error paddle_gradient_machine_create_for_inference( ...@@ -39,7 +39,11 @@ PD_API paddle_error paddle_gradient_machine_create_for_inference(
/** /**
* @brief Create a gradient machine used for model inference, using config with * @brief Create a gradient machine used for model inference, using config with
* parameters which is generated by `paddle merge_model`. * parameters which is generated by `paddle merge_model`.
* @param [out] machine that used for model inference. * Example:
* paddle merge_model \
* --model_dir="pass-00000" \
* --model_file="merged_model.paddle"
* @param [out] machine that used for model inference
* @param [in] mergedModel * @param [in] mergedModel
* @param [in] size * @param [in] size
* @return paddle_error * @return paddle_error
...@@ -97,6 +101,18 @@ paddle_gradient_machine_randomize_param(paddle_gradient_machine machine); ...@@ -97,6 +101,18 @@ paddle_gradient_machine_randomize_param(paddle_gradient_machine machine);
PD_API paddle_error PD_API paddle_error
paddle_gradient_machine_destroy(paddle_gradient_machine machine); paddle_gradient_machine_destroy(paddle_gradient_machine machine);
/**
* @brief Get the output of the layer named `layerName`.
* @param [in] gradient machine that have run a inference
* @param [in] layerName name of specified layer
* @param [out] args output of the specified layer
* @return paddle_error
*/
PD_API paddle_error
paddle_gradient_machine_get_layer_output(paddle_gradient_machine machine,
const char* layerName,
paddle_arguments args);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
......
...@@ -38,7 +38,7 @@ add_custom_command(TARGET framework_py_proto POST_BUILD ...@@ -38,7 +38,7 @@ add_custom_command(TARGET framework_py_proto POST_BUILD
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
cc_library(backward SRCS backward.cc DEPS net_op) cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward) cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context)
if(WITH_PYTHON) if(WITH_PYTHON)
cc_library(paddle_pybind SHARED cc_library(paddle_pybind SHARED
......
...@@ -17,12 +17,13 @@ ...@@ -17,12 +17,13 @@
#include <list> #include <list>
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h" #include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
template <typename Map, typename T> template <typename Map, typename T>
static void ForEachVarName(Map& names, T callback) { static void ForEachVarName(const Map& names, T callback) {
for (auto& name : names) { for (auto& name : names) {
for (auto& n : name.second) { for (auto& n : name.second) {
if (callback(n)) return; if (callback(n)) return;
...@@ -44,7 +45,7 @@ static bool AllInSet( ...@@ -44,7 +45,7 @@ static bool AllInSet(
static std::shared_ptr<OperatorBase> NOP() { static std::shared_ptr<OperatorBase> NOP() {
auto net_op = std::make_shared<operators::NetOp>(); auto net_op = std::make_shared<operators::NetOp>();
net_op->type_ = "@NOP@"; net_op->SetType("@NOP@");
net_op->CompleteAddOp(); net_op->CompleteAddOp();
return net_op; return net_op;
} }
...@@ -70,8 +71,8 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -70,8 +71,8 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) { std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
// If all input gradients of forwarding operator do not need to calculate, // If all input gradients of forwarding operator do not need to calculate,
// just return an NOP. Not return null ptr because NOP does not take // just return an NOP. Not return null ptr because NOP does not take
// much time for calculation, but it is useful for simplifying logic. // too much time for calculation, but it is useful for simplifying logic.
if (AllInSet(forwardOp.inputs_ /*names*/, kGradVarSuffix /*suffix*/, if (AllInSet(forwardOp.Inputs() /*names*/, kGradVarSuffix /*suffix*/,
no_grad_names /*set*/)) { no_grad_names /*set*/)) {
return NOP(); return NOP();
} }
...@@ -79,9 +80,9 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -79,9 +80,9 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// All output gradients of forwarding operator do not need to calculate. // All output gradients of forwarding operator do not need to calculate.
// Then all input gradients cannot be computed at all, and we put them into // Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP. // `no_grad_names` set. Return an NOP.
if (AllInSet(forwardOp.outputs_ /*names*/, kGradVarSuffix /*suffix*/, if (AllInSet(forwardOp.Outputs() /*names*/, kGradVarSuffix /*suffix*/,
no_grad_names /*set*/)) { no_grad_names /*set*/)) {
ForEachVarName(forwardOp.inputs_, ForEachVarName(forwardOp.Inputs(),
[&no_grad_names](const std::string& name) -> bool { [&no_grad_names](const std::string& name) -> bool {
no_grad_names.insert(GradVarName(name)); no_grad_names.insert(GradVarName(name));
return false; return false;
...@@ -107,7 +108,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -107,7 +108,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
auto fwd = *it; auto fwd = *it;
auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id); auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
net->AddOp(bwd); net->AddOp(bwd);
ForEachVarName(bwd->outputs_, ForEachVarName(bwd->Outputs(),
[&dup_output_ops, local_op_id](const std::string& out) { [&dup_output_ops, local_op_id](const std::string& out) {
dup_output_ops[out].emplace_back(local_op_id); dup_output_ops[out].emplace_back(local_op_id);
return false; return false;
...@@ -154,13 +155,13 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -154,13 +155,13 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
} else { } else {
std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp); std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
ForEachVarName(grad_op->inputs_, [&no_grad_names, ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net,
&net](std::string& grad_input) { grad_op](const std::string& grad_input) {
if (no_grad_names.count(grad_input)) { if (no_grad_names.count(grad_input)) {
// +1 for \0 // +1 for \0
std::string prefix = grad_input.substr( std::string prefix = grad_input.substr(
0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1); 0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
grad_input = prefix + kZeroVarSuffix; grad_op->Rename(grad_input, prefix + kZeroVarSuffix);
// If part of input gradient of that operator is not calculated, fill // If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient. // zero variables to that input gradient.
...@@ -170,20 +171,36 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -170,20 +171,36 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
return false; return false;
}); });
ForEachVarName(grad_op->outputs_, ForEachVarName(grad_op->Outputs(),
[&no_grad_names](std::string& grad_output) { [&no_grad_names, &grad_op](const std::string& grad_output) {
if (no_grad_names.count(grad_output)) { if (no_grad_names.count(grad_output)) {
grad_output = kEmptyVarName; grad_op->Rename(grad_output, kEmptyVarName);
} }
return false; return false;
}); });
// process recurrent gradient op as a special operator.
if (forwardOp.Type() == "recurrent_op") {
// NOTE clean up cycle call somewhere (RNN's stepnet constains itself), or
// this will result in infinite loop.
const auto& rnnop =
*static_cast<const operators::RecurrentOp*>(&forwardOp);
auto rnn_grad_op =
static_cast<operators::RecurrentGradientOp*>(grad_op.get());
const auto& stepnet_op =
*static_cast<const OperatorBase*>(&rnnop.stepnet());
// create stepnet's gradient op
auto grad_stepnet = BackwardRecursive(stepnet_op, no_grad_names, uniq_id);
rnn_grad_op->set_stepnet(
std::static_pointer_cast<operators::NetOp>(grad_stepnet));
}
if (net->ops_.empty()) { // Current no aux op is added to network if (net->ops_.empty()) { // Current no aux op is added to network
return grad_op; return grad_op;
} }
net->AddOp(grad_op); net->AddOp(grad_op);
} }
net->type_ = "@GENERATED_BACKWARD@"; net->SetType("@GENERATED_BACKWARD@");
net->CompleteAddOp(); net->CompleteAddOp();
return net; return net;
} // namespace framework } // namespace framework
......
...@@ -28,13 +28,6 @@ using OpAttrChecker = framework::OpAttrChecker; ...@@ -28,13 +28,6 @@ using OpAttrChecker = framework::OpAttrChecker;
using Scope = framework::Scope; using Scope = framework::Scope;
using DeviceContext = platform::DeviceContext; using DeviceContext = platform::DeviceContext;
class EmptyOp : public OperatorBase {
public:
using OperatorBase::OperatorBase;
void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope, const DeviceContext &dev_ctx) const override {}
};
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker { class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
public: public:
RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker) RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
...@@ -155,27 +148,24 @@ class AddOpMaker : public OpProtoAndCheckerMaker { ...@@ -155,27 +148,24 @@ class AddOpMaker : public OpProtoAndCheckerMaker {
namespace f = paddle::framework; namespace f = paddle::framework;
namespace ops = paddle::operators; namespace ops = paddle::operators;
using EnforceNotMet = paddle::platform::EnforceNotMet; using EnforceNotMet = paddle::platform::EnforceNotMet;
REGISTER_OP(rowwise_add, f::EmptyOp, f::RowWiseAddOpMaker); REGISTER_OP(rowwise_add, f::NOP, f::RowWiseAddOpMaker, rowwise_add_grad,
REGISTER_GRADIENT_OP(rowwise_add, rowwise_add_grad, f::EmptyOp); f::NOP);
REGISTER_OP(mul, f::EmptyOp, f::MulOpMaker); REGISTER_OP(mul, f::NOP, f::MulOpMaker, mul_grad, f::NOP);
REGISTER_GRADIENT_OP(mul, mul_grad, f::EmptyOp); REGISTER_OP(sigmoid, f::NOP, f::SigmoidOpMaker, sigmoid_grad, f::NOP);
REGISTER_OP(sigmoid, f::EmptyOp, f::SigmoidOpMaker); REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NOP, f::NoGradOpMaker);
REGISTER_GRADIENT_OP(sigmoid, sigmoid_grad, f::EmptyOp); REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NOP, f::FillZeroOpMaker);
REGISTER_OP(nograd, f::EmptyOp, f::NoGradOpMaker); REGISTER_OP(add, f::NOP, f::AddOpMaker, add_grad, f::NOP);
REGISTER_OP(fill_zeros_like, f::EmptyOp, f::FillZeroOpMaker); REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker);
REGISTER_OP(add, f::EmptyOp, f::AddOpMaker); REGISTER_OP(many_output_op, f::NOP, f::ManyOutputOpMaker, many_output_op_grad,
REGISTER_GRADIENT_OP(add, add_grad, f::EmptyOp); f::NOP);
REGISTER_OP(fc, f::FcOp, f::FcOpMaker);
REGISTER_OP(many_output_op, f::EmptyOp, f::ManyOutputOpMaker);
REGISTER_GRADIENT_OP(many_output_op, many_output_op_grad, f::EmptyOp);
TEST(Backward, simple_op_grad) { TEST(Backward, simple_op_grad) {
auto fwd = f::OpRegistry::CreateOp( auto fwd = f::OpRegistry::CreateOp(
"rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
auto gop = f::OpRegistry::CreateGradOp(*fwd); auto gop = f::OpRegistry::CreateGradOp(*fwd);
ASSERT_EQ(1UL, gop->inputs_.size()); ASSERT_EQ(1UL, gop->Inputs().size());
ASSERT_EQ("rowwise_add_grad", gop->type_); ASSERT_EQ("rowwise_add_grad", gop->Type());
ASSERT_EQ(f::GradVarName("x"), gop->Output(f::GradVarName("X"))); ASSERT_EQ(f::GradVarName("x"), gop->Output(f::GradVarName("X")));
ASSERT_EQ(f::GradVarName("b"), gop->Output(f::GradVarName("b"))); ASSERT_EQ(f::GradVarName("b"), gop->Output(f::GradVarName("b")));
} }
...@@ -211,13 +201,13 @@ TEST(Backward, net_fc_backward_normal) { ...@@ -211,13 +201,13 @@ TEST(Backward, net_fc_backward_normal) {
ASSERT_EQ(3UL, net->ops_.size()); ASSERT_EQ(3UL, net->ops_.size());
f::OperatorBase &d_sigmoid = *net->ops_[0]; f::OperatorBase &d_sigmoid = *net->ops_[0];
ASSERT_EQ("sigmoid_grad", d_sigmoid.type_); ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
f::OperatorBase &d_add = *net->ops_[1]; f::OperatorBase &d_add = *net->ops_[1];
ASSERT_EQ("rowwise_add_grad", d_add.type_); ASSERT_EQ("rowwise_add_grad", d_add.Type());
f::OperatorBase &d_mul = *net->ops_[2]; f::OperatorBase &d_mul = *net->ops_[2];
ASSERT_EQ("mul_grad", d_mul.type_); ASSERT_EQ("mul_grad", d_mul.Type());
} }
TEST(Backward, net_fc_backward_not_have_b) { TEST(Backward, net_fc_backward_not_have_b) {
...@@ -237,10 +227,10 @@ TEST(Backward, net_fc_backward_not_have_b) { ...@@ -237,10 +227,10 @@ TEST(Backward, net_fc_backward_not_have_b) {
ASSERT_EQ(2UL, net->ops_.size()); ASSERT_EQ(2UL, net->ops_.size());
f::OperatorBase &d_sigmoid = *net->ops_[0]; f::OperatorBase &d_sigmoid = *net->ops_[0];
ASSERT_EQ("sigmoid_grad", d_sigmoid.type_); ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
f::OperatorBase &d_mul = *net->ops_[1]; f::OperatorBase &d_mul = *net->ops_[1];
ASSERT_EQ("mul_grad", d_mul.type_); ASSERT_EQ("mul_grad", d_mul.Type());
} }
TEST(Backward, net_input_of_network_not_need_grad) { TEST(Backward, net_input_of_network_not_need_grad) {
...@@ -294,7 +284,7 @@ TEST(Backward, net_shared_weight) { ...@@ -294,7 +284,7 @@ TEST(Backward, net_shared_weight) {
ASSERT_TRUE(bwd->IsNetOp()); ASSERT_TRUE(bwd->IsNetOp());
auto bwd_net = static_cast<ops::NetOp *>(bwd.get()); auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
ASSERT_EQ(3UL, bwd_net->ops_.size()); ASSERT_EQ(3UL, bwd_net->ops_.size());
ASSERT_EQ("add", bwd_net->ops_[2]->type_); ASSERT_EQ("add", bwd_net->ops_[2]->Type());
} }
TEST(Backward, op_register_grad_not_for_network) { TEST(Backward, op_register_grad_not_for_network) {
...@@ -335,15 +325,15 @@ TEST(Backward, op_part_of_output_are_not_need) { ...@@ -335,15 +325,15 @@ TEST(Backward, op_part_of_output_are_not_need) {
ASSERT_EQ(net->ops_.size(), 2UL); ASSERT_EQ(net->ops_.size(), 2UL);
auto &fill_zero = *net->ops_[0]; auto &fill_zero = *net->ops_[0];
ASSERT_EQ("fill_zeros_like", fill_zero.type_); ASSERT_EQ("fill_zeros_like", fill_zero.Type());
ASSERT_EQ(1UL, fill_zero.Inputs("Src").size()); ASSERT_EQ(1UL, fill_zero.Inputs("Src").size());
ASSERT_EQ("Z", fill_zero.Input("Src")); ASSERT_EQ("Z", fill_zero.Input("Src"));
ASSERT_EQ(1UL, fill_zero.Outputs("Dst").size()); ASSERT_EQ(1UL, fill_zero.Outputs("Dst").size());
ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Dst")); ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Dst"));
auto &d_many_out = *net->ops_[1]; auto &d_many_out = *net->ops_[1];
ASSERT_EQ("many_output_op_grad", d_many_out.type_); ASSERT_EQ("many_output_op_grad", d_many_out.Type());
ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.inputs_.size()); // I/O/OG ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.Inputs().size()); // I/O/OG
ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix,
d_many_out.Input(f::GradVarName("z"))); d_many_out.Input(f::GradVarName("z")));
ASSERT_EQ(f::GradVarName("Y"), d_many_out.Input(f::GradVarName("y"))); ASSERT_EQ(f::GradVarName("Y"), d_many_out.Input(f::GradVarName("y")));
...@@ -355,9 +345,9 @@ TEST(Backward, op_part_of_input_are_not_need) { ...@@ -355,9 +345,9 @@ TEST(Backward, op_part_of_input_are_not_need) {
{{"Out", {"out"}}}, {}); {{"Out", {"out"}}}, {});
auto backward = f::Backward(*fwd, {"a"}); auto backward = f::Backward(*fwd, {"a"});
auto &grad_mul = *backward; auto &grad_mul = *backward;
ASSERT_EQ(grad_mul.type_, "mul_grad"); ASSERT_EQ(grad_mul.Type(), "mul_grad");
ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL); ASSERT_EQ(grad_mul.Inputs().size(), 2UL + 1UL + 1UL);
ASSERT_EQ(grad_mul.outputs_.size(), 2UL); ASSERT_EQ(grad_mul.Outputs().size(), 2UL);
ASSERT_EQ(grad_mul.Output(f::GradVarName("X")), f::kEmptyVarName); ASSERT_EQ(grad_mul.Output(f::GradVarName("X")), f::kEmptyVarName);
ASSERT_EQ(grad_mul.Output(f::GradVarName("Y")), f::GradVarName("b")); ASSERT_EQ(grad_mul.Output(f::GradVarName("Y")), f::GradVarName("b"));
ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out")); ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out"));
...@@ -395,18 +385,18 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { ...@@ -395,18 +385,18 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
auto &grad_fc = *bwd_net->ops_[0]; auto &grad_fc = *bwd_net->ops_[0];
const char *all = paddle::operators::NetOp::kAll; const char *all = paddle::operators::NetOp::kAll;
EXPECT_EQ(grad_fc.inputs_[all].size(), EXPECT_EQ(grad_fc.Inputs(all).size(),
2UL /* external input number */ 2UL /* external input number */
+ 1UL /* external output number*/ + 1UL /* external output number*/
+ 1UL /* number of gradient of external output*/ + 1UL /* number of gradient of external output*/
+ 2U /* internal variable number*/); + 2U /* internal variable number*/);
EXPECT_EQ(grad_fc.outputs_[all].size(), EXPECT_EQ(grad_fc.Outputs(all).size(),
2UL /* input number of mul*/ 2UL /* input number of mul*/
+ 2UL /* input number of rowwise_add + 2UL /* input number of rowwise_add
*/ */
+ 1UL /* input number of sigmod */); + 1UL /* input number of sigmod */);
EXPECT_EQ(bwd_net->ops_[1]->inputs_[all].size(), 0UL); EXPECT_EQ(bwd_net->ops_[1]->Inputs(all).size(), 0UL);
EXPECT_EQ(bwd_net->ops_[1]->outputs_[all].size(), 0UL); EXPECT_EQ(bwd_net->ops_[1]->Outputs(all).size(), 0UL);
EXPECT_EQ(bwd_net->ops_[2]->inputs_[all].size(), 0UL); EXPECT_EQ(bwd_net->ops_[2]->Inputs(all).size(), 0UL);
EXPECT_EQ(bwd_net->ops_[2]->outputs_[all].size(), 0UL); EXPECT_EQ(bwd_net->ops_[2]->Outputs(all).size(), 0UL);
} }
...@@ -13,23 +13,20 @@ express or implied. See the License for the specific language governing ...@@ -13,23 +13,20 @@ express or implied. See the License for the specific language governing
permissions and limitations under the License. */ permissions and limitations under the License. */
#include "paddle/framework/grad_op_builder.h" #include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
enum class OpArgType { IN, OUT }; enum class OpArgType { IN, OUT };
static void TransOpArg(const OperatorBase* src_op, static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type,
OperatorBase::VarNameMap* vars, bool is_grad, OperatorBase::VarNameMap* vars) {
const OpArgType& src_type, bool is_grad) {
const auto& src_inout = const auto& src_inout =
src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_; src_type == OpArgType::IN ? src_op->Inputs() : src_op->Outputs();
auto& dst_inout = *vars; auto& dst_inout = *vars;
const OpProto* proto = OpRegistry::op_info_map().at(src_op->Type()).proto_;
const OpProto& proto = OpProtos().at(src_op->type_);
const auto& src_arg_list = const auto& src_arg_list =
src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); src_type == OpArgType::IN ? proto->inputs() : proto->outputs();
for (const auto& arg : src_arg_list) { for (const auto& arg : src_arg_list) {
if (arg.no_gradient() && !is_grad) continue; if (arg.no_gradient() && !is_grad) continue;
const std::string src_name = arg.name(); const std::string src_name = arg.name();
...@@ -43,22 +40,26 @@ static void TransOpArg(const OperatorBase* src_op, ...@@ -43,22 +40,26 @@ static void TransOpArg(const OperatorBase* src_op,
} }
OperatorBase* BuildGradOp(const OperatorBase* op) { OperatorBase* BuildGradOp(const OperatorBase* op) {
auto gop_type_it = OpRegistry::grad_ops().find(op->type_); auto it = OpRegistry::op_info_map().find(op->Type());
PADDLE_ENFORCE(gop_type_it != OpRegistry::grad_ops().end(), PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(),
"Operator %s do not register gradient type", op->type_); "'%s' has not been registered.", op->Type());
auto& grad_op_type = gop_type_it->second; PADDLE_ENFORCE(it->second.proto_ != nullptr, "'%s' has no OpProto.",
op->Type());
std::string grad_op_type = it->second.grad_op_type_;
PADDLE_ENFORCE(!grad_op_type.empty(), "'%s' has no gradient operator.",
op->Type());
OperatorBase::VarNameMap inputs; OperatorBase::VarNameMap inputs;
OperatorBase::VarNameMap outputs; OperatorBase::VarNameMap outputs;
TransOpArg(op, &inputs, OpArgType::IN, false); // I TransOpArg(op, OpArgType::IN, false, &inputs); // I
TransOpArg(op, &inputs, OpArgType::OUT, false); // O TransOpArg(op, OpArgType::OUT, false, &inputs); // O
TransOpArg(op, &inputs, OpArgType::OUT, true); // OG TransOpArg(op, OpArgType::OUT, true, &inputs); // OG
TransOpArg(op, &outputs, OpArgType::IN, true); // IG TransOpArg(op, OpArgType::IN, true, &outputs); // IG
auto gop_it = OpRegistry::op_creators().find(grad_op_type);
PADDLE_ENFORCE(gop_it != OpRegistry::op_creators().end(),
"Operator %s 's Gradient %s's creator cannot be found",
op->type_, grad_op_type);
return gop_it->second(grad_op_type, inputs, outputs, op->attrs_); it = OpRegistry::op_info_map().find(grad_op_type);
PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(),
"'%s' has not been registered.", grad_op_type);
return it->second.creator_(grad_op_type, inputs, outputs, op->Attrs());
} }
} // namespace framework } // namespace framework
......
...@@ -8,14 +8,6 @@ USE_OP(add_two); ...@@ -8,14 +8,6 @@ USE_OP(add_two);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class NOP : public OperatorBase {
public:
using OperatorBase::OperatorBase;
void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope,
const platform::DeviceContext &dev_ctx) const override {}
};
class MutiInOutOpMaker : public OpProtoAndCheckerMaker { class MutiInOutOpMaker : public OpProtoAndCheckerMaker {
public: public:
MutiInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker) MutiInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker)
...@@ -52,8 +44,8 @@ TEST(GradOpBuilder, AddTwo) { ...@@ -52,8 +44,8 @@ TEST(GradOpBuilder, AddTwo) {
"add_two", {{"X", {"x"}}, {"Y", {"y"}}}, {{"Out", {"out"}}}, {})); "add_two", {{"X", {"x"}}, {"Y", {"y"}}}, {{"Out", {"out"}}}, {}));
std::shared_ptr<f::OperatorBase> grad_add_op = std::shared_ptr<f::OperatorBase> grad_add_op =
f::OpRegistry::CreateGradOp(*add_op); f::OpRegistry::CreateGradOp(*add_op);
EXPECT_EQ(grad_add_op->inputs_.size(), 4UL); EXPECT_EQ(grad_add_op->Inputs().size(), 4UL);
EXPECT_EQ(grad_add_op->outputs_.size(), 2UL); EXPECT_EQ(grad_add_op->Outputs().size(), 2UL);
EXPECT_EQ(grad_add_op->Input("X"), "x"); EXPECT_EQ(grad_add_op->Input("X"), "x");
EXPECT_EQ(grad_add_op->Input("Y"), "y"); EXPECT_EQ(grad_add_op->Input("Y"), "y");
EXPECT_EQ(grad_add_op->Input("Out"), "out"); EXPECT_EQ(grad_add_op->Input("Out"), "out");
...@@ -62,10 +54,8 @@ TEST(GradOpBuilder, AddTwo) { ...@@ -62,10 +54,8 @@ TEST(GradOpBuilder, AddTwo) {
EXPECT_EQ(grad_add_op->Output(f::GradVarName("Y")), f::GradVarName("y")); EXPECT_EQ(grad_add_op->Output(f::GradVarName("Y")), f::GradVarName("y"));
} }
REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker); REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker, mult_io_grad, f::NOP);
REGISTER_GRADIENT_OP(mult_io, mult_io_grad, f::NOP); REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker, io_ignored_grad, f::NOP);
REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker);
REGISTER_GRADIENT_OP(io_ignored, io_ignored_grad, f::NOP);
TEST(GradOpBuilder, MutiInOut) { TEST(GradOpBuilder, MutiInOut) {
std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp( std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp(
...@@ -76,7 +66,7 @@ TEST(GradOpBuilder, MutiInOut) { ...@@ -76,7 +66,7 @@ TEST(GradOpBuilder, MutiInOut) {
std::shared_ptr<f::OperatorBase> grad_test_op = std::shared_ptr<f::OperatorBase> grad_test_op =
f::OpRegistry::CreateGradOp(*test_op); f::OpRegistry::CreateGradOp(*test_op);
ASSERT_EQ(grad_test_op->inputs_.size(), 3UL + 2UL + 2UL); ASSERT_EQ(grad_test_op->Inputs().size(), 3UL + 2UL + 2UL);
EXPECT_EQ(grad_test_op->Input("In1"), "in1"); EXPECT_EQ(grad_test_op->Input("In1"), "in1");
EXPECT_EQ(grad_test_op->Inputs("In2_mult"), EXPECT_EQ(grad_test_op->Inputs("In2_mult"),
std::vector<std::string>({"in2_1", "in2_2", "in2_3"})); std::vector<std::string>({"in2_1", "in2_2", "in2_3"}));
...@@ -90,7 +80,7 @@ TEST(GradOpBuilder, MutiInOut) { ...@@ -90,7 +80,7 @@ TEST(GradOpBuilder, MutiInOut) {
std::vector<std::string>( std::vector<std::string>(
{f::GradVarName("out2_1"), f::GradVarName("out2_2")})); {f::GradVarName("out2_1"), f::GradVarName("out2_2")}));
ASSERT_EQ(grad_test_op->outputs_.size(), 3UL); ASSERT_EQ(grad_test_op->Outputs().size(), 3UL);
EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1")); EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1"));
EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")), EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")),
std::vector<std::string>({f::GradVarName("in2_1"), std::vector<std::string>({f::GradVarName("in2_1"),
...@@ -109,7 +99,7 @@ TEST(GradOpBuilder, IOIgnoredInGradient) { ...@@ -109,7 +99,7 @@ TEST(GradOpBuilder, IOIgnoredInGradient) {
f::OpRegistry::CreateGradOp(*test_op); f::OpRegistry::CreateGradOp(*test_op);
// 'In2' and 'Out2' are ignored in gradient calculating // 'In2' and 'Out2' are ignored in gradient calculating
ASSERT_EQ(grad_test_op->inputs_.size(), 2UL + 1UL + 2UL); ASSERT_EQ(grad_test_op->Inputs().size(), 2UL + 1UL + 2UL);
EXPECT_EQ(grad_test_op->Input("In1"), "in1"); EXPECT_EQ(grad_test_op->Input("In1"), "in1");
EXPECT_EQ(grad_test_op->Inputs("In3_mult"), EXPECT_EQ(grad_test_op->Inputs("In3_mult"),
std::vector<std::string>({"in3_1", "in3_2"})); std::vector<std::string>({"in3_1", "in3_2"}));
...@@ -121,7 +111,7 @@ TEST(GradOpBuilder, IOIgnoredInGradient) { ...@@ -121,7 +111,7 @@ TEST(GradOpBuilder, IOIgnoredInGradient) {
EXPECT_EQ(grad_test_op->Input(f::GradVarName("Out2")), EXPECT_EQ(grad_test_op->Input(f::GradVarName("Out2")),
f::GradVarName("out2")); f::GradVarName("out2"));
ASSERT_EQ(grad_test_op->outputs_.size(), 3UL); ASSERT_EQ(grad_test_op->Outputs().size(), 3UL);
EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1")); EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1"));
EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")), EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")),
std::vector<std::string>( std::vector<std::string>(
......
...@@ -17,5 +17,49 @@ limitations under the License. */ ...@@ -17,5 +17,49 @@ limitations under the License. */
#include <vector> #include <vector>
namespace paddle { namespace paddle {
namespace framework {} // namespace framework namespace framework {
std::shared_ptr<OperatorBase> OpRegistry::CreateOp(const std::string& type,
const VarNameMap& inputs,
const VarNameMap& outputs,
AttributeMap attrs) {
auto it = op_info_map().find(type);
PADDLE_ENFORCE(it != op_info_map().end(),
"Operator '%s' has not been registered.", type);
it->second.checker_->Check(attrs);
auto op = it->second.creator_(type, inputs, outputs, attrs);
return std::shared_ptr<OperatorBase>(op);
}
std::shared_ptr<OperatorBase> OpRegistry::CreateOp(const OpDesc& op_desc) {
VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs());
VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs());
AttributeMap attrs;
for (auto& attr : op_desc.attrs()) {
attrs[attr.name()] = GetAttrValue(attr);
}
return CreateOp(op_desc.type(), inputs, outputs, attrs);
}
OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap(
const google::protobuf::RepeatedPtrField<OpDesc::Var>& op_desc_vars) {
VarNameMap ret_val;
for (auto& var : op_desc_vars) {
auto& var_names = ret_val[var.parameter()];
auto& var_names_in_proto = var.arguments();
var_names.reserve(static_cast<size_t>(var_names_in_proto.size()));
std::copy(var_names_in_proto.begin(), var_names_in_proto.end(),
std::back_inserter(var_names));
}
return ret_val;
}
std::shared_ptr<OperatorBase> OpRegistry::CreateGradOp(const OperatorBase& op) {
PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops");
std::shared_ptr<OperatorBase> grad_op(BuildGradOp(&op));
return grad_op;
}
} // namespace framework
} // namespace paddle } // namespace paddle
...@@ -17,6 +17,7 @@ limitations under the License. */ ...@@ -17,6 +17,7 @@ limitations under the License. */
#include <algorithm> #include <algorithm>
#include <atomic> #include <atomic>
#include <type_traits> #include <type_traits>
#include <typeinfo>
#include <unordered_map> #include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include "paddle/framework/attribute.h" #include "paddle/framework/attribute.h"
...@@ -28,97 +29,6 @@ limitations under the License. */ ...@@ -28,97 +29,6 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
public:
OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: proto_(proto), op_checker_(op_checker) {}
~OpProtoAndCheckerMaker() {
PADDLE_ENFORCE(validated_, "should call Validate after build");
}
void Validate() {
validated_ = true;
CheckNoDuplicatedInOutAttrs();
}
protected:
struct VariableBuilder {
OpProto::Var* var_;
VariableBuilder& AsDuplicable() {
var_->set_duplicable(true);
return *this;
}
VariableBuilder& AsIntermediate() {
var_->set_intermediate(true);
return *this;
}
// TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it
// means that input/output is not needed when calculate gradient. It does
// not mean no gradient when backward. It should be changed soon.
VariableBuilder& AsNoGradient() {
var_->set_no_gradient(true);
return *this;
}
};
VariableBuilder AddInput(const std::string& name,
const std::string& comment) {
auto* input = proto_->add_inputs();
input->set_name(name);
input->set_comment(comment);
return VariableBuilder{input};
}
VariableBuilder AddOutput(const std::string& name,
const std::string& comment) {
auto* output = proto_->add_outputs();
output->set_name(name);
output->set_comment(comment);
return VariableBuilder{output};
}
template <typename T>
TypedAttrChecker<T>& AddAttr(const std::string& name,
const std::string& comment,
bool generated = false) {
auto* attr = proto_->add_attrs();
attr->set_name(name);
attr->set_comment(comment);
attr->set_generated(generated);
attr->set_type(AttrTypeID<T>());
return op_checker_->AddAttrChecker<T>(name);
}
void AddComment(const std::string& comment) { proto_->set_comment(comment); }
private:
void CheckNoDuplicatedInOutAttrs() {
std::unordered_set<std::string> names;
auto checker = [&](const std::string& name) {
PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name);
names.insert(name);
};
for (auto& attr : proto_->attrs()) {
checker(attr.name());
}
for (auto& input : proto_->inputs()) {
checker(input.name());
}
for (auto& output : proto_->outputs()) {
checker(output.name());
}
}
OpProto* proto_;
OpAttrChecker* op_checker_;
bool validated_{false};
};
class OpRegistry { class OpRegistry {
using VarNameMap = OperatorBase::VarNameMap; using VarNameMap = OperatorBase::VarNameMap;
using OpCreator = std::function<OperatorBase*( using OpCreator = std::function<OperatorBase*(
...@@ -126,123 +36,85 @@ class OpRegistry { ...@@ -126,123 +36,85 @@ class OpRegistry {
const VarNameMap& /*outputs*/, const AttributeMap& /*attrs*/)>; const VarNameMap& /*outputs*/, const AttributeMap& /*attrs*/)>;
public: public:
template <typename OpType, typename ProtoMakerType> struct OpInfo {
static void RegisterOp(const std::string& op_type) { OpCreator creator_;
op_creators()[op_type] = []( std::string grad_op_type_;
const std::string& type, const VarNameMap& inputs, OpProto* proto_;
const VarNameMap& outputs, const AttributeMap& attrs) { OpAttrChecker* checker_;
return new OpType(type, inputs, outputs, attrs); };
};
OpAttrChecker& op_checker = op_checkers()[op_type];
OpProto& op_proto = OpProtos()[op_type];
auto maker = ProtoMakerType(&op_proto, &op_checker);
maker.Validate();
op_proto.set_type(op_type);
PADDLE_ENFORCE(
op_proto.IsInitialized(),
"Fail to initialize %s's OpProto, because %s is not initialized",
op_type, op_proto.InitializationErrorString());
}
template <typename GradOpType> template <typename OpType, typename ProtoMakerType, typename GradOpType>
static void RegisterGradOp(const std::string& op_type, static void RegisterOp(const std::string& op_type,
const std::string& grad_op_type) { const std::string& grad_op_type) {
op_creators()[grad_op_type] = []( PADDLE_ENFORCE(op_info_map().count(op_type) == 0,
const std::string& type, const VarNameMap& inputs, "'%s' is registered more than once.", op_type);
const VarNameMap& outputs, const AttributeMap& attrs) { OpInfo op_info;
return new GradOpType(type, inputs, outputs, attrs); op_info.creator_ = [](const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs,
const AttributeMap& attrs) {
return new OpType(type, inputs, outputs, attrs);
}; };
grad_ops()[op_type] = grad_op_type; op_info.grad_op_type_ = grad_op_type;
if (std::type_index(typeid(ProtoMakerType)) !=
std::type_index(typeid(NOPMaker))) {
op_info.proto_ = new OpProto;
op_info.checker_ = new OpAttrChecker;
auto maker = ProtoMakerType(op_info.proto_, op_info.checker_);
maker.Validate();
op_info.proto_->set_type(op_type);
PADDLE_ENFORCE(
op_info.proto_->IsInitialized(),
"Fail to initialize %s's OpProto, because %s is not initialized",
op_type, op_info.proto_->InitializationErrorString());
} else {
op_info.proto_ = nullptr;
op_info.checker_ = nullptr;
}
op_info_map().insert(std::make_pair(op_type, op_info));
// register gradient op
if (!grad_op_type.empty()) {
RegisterOp<GradOpType, NOPMaker, NOP>(grad_op_type, "");
}
} }
static std::shared_ptr<OperatorBase> CreateOp(const std::string& type, static std::shared_ptr<OperatorBase> CreateOp(const std::string& type,
const VarNameMap& inputs, const VarNameMap& inputs,
const VarNameMap& outputs, const VarNameMap& outputs,
AttributeMap attrs) { AttributeMap attrs);
auto op_create_it = op_creators().find(type);
PADDLE_ENFORCE(op_create_it != op_creators().end(),
"Operator %s cannot be found.", type);
op_checkers().at(type).Check(attrs);
auto op = op_create_it->second(type, inputs, outputs, attrs); static std::shared_ptr<OperatorBase> CreateOp(const OpDesc& op_desc);
return std::shared_ptr<OperatorBase>(op);
}
static VarNameMap ConvertOpDescVarsToVarNameMap( static VarNameMap ConvertOpDescVarsToVarNameMap(
const google::protobuf::RepeatedPtrField<OpDesc::Var>& op_desc_vars) { const google::protobuf::RepeatedPtrField<OpDesc::Var>& op_desc_vars);
VarNameMap ret_val;
for (auto& var : op_desc_vars) {
auto& var_names = ret_val[var.parameter()];
auto& var_names_in_proto = var.arguments();
var_names.reserve(static_cast<size_t>(var_names_in_proto.size()));
std::copy(var_names_in_proto.begin(), var_names_in_proto.end(),
std::back_inserter(var_names));
}
return ret_val;
}
static std::shared_ptr<OperatorBase> CreateOp(const OpDesc& op_desc) { static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op);
VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs());
VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs());
AttributeMap attrs;
for (auto& attr : op_desc.attrs()) {
attrs[attr.name()] = GetAttrValue(attr);
}
return CreateOp(op_desc.type(), inputs, outputs, attrs); static std::unordered_map<std::string, const OpInfo>& op_info_map() {
} static std::unordered_map<std::string, const OpInfo> op_info_map_;
return op_info_map_;
static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op) {
PADDLE_ENFORCE(!op.IsNetOp(),
"Use framework::Backward to get backward ops");
std::shared_ptr<OperatorBase> grad_op(BuildGradOp(&op));
return grad_op;
}
static std::unordered_map<std::string, std::string>& grad_ops() {
static std::unordered_map<std::string, std::string> grad_ops_;
return grad_ops_;
}
static std::unordered_map<std::string, OpCreator>& op_creators() {
static std::unordered_map<std::string, OpCreator> op_creators_;
return op_creators_;
}
private:
static std::unordered_map<std::string, OpAttrChecker>& op_checkers() {
static std::unordered_map<std::string, OpAttrChecker> op_checkers_;
return op_checkers_;
} }
}; };
class Registrar { class Registrar {
public: public:
// In our design, various kinds of classes, e.g., operators and kernels, have // In our design, various kinds of classes, e.g., operators and kernels,
// their corresponding registry and registrar. The action of registration is // have their corresponding registry and registrar. The action of
// in the constructor of a global registrar variable, which, however, are not // registration is in the constructor of a global registrar variable, which,
// used in the code that calls package framework, and would be removed from // however, are not used in the code that calls package framework, and would
// the generated binary file by the linker. To avoid such removal, we add // be removed from the generated binary file by the linker. To avoid such
// Touch to all registrar classes and make USE_OP macros to call this // removal, we add Touch to all registrar classes and make USE_OP macros to
// method. So, as long as the callee code calls USE_OP, the global // call this method. So, as long as the callee code calls USE_OP, the global
// registrar variable won't be removed by the linker. // registrar variable won't be removed by the linker.
void Touch() {} void Touch() {}
}; };
template <typename OpType, typename ProtoMakerType> template <typename OpType, typename ProtoMakerType, typename GradOpType>
class OpRegistrar : public Registrar { class OpRegistrar : public Registrar {
public: public:
explicit OpRegistrar(const char* op_type) { explicit OpRegistrar(const char* op_type) { OpRegistrar(op_type, ""); }
OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type); OpRegistrar(const char* op_type, const char* grad_op_type) {
} OpRegistry::RegisterOp<OpType, ProtoMakerType, GradOpType>(op_type,
}; grad_op_type);
template <typename GradOpType>
class GradOpRegistrar : public Registrar {
public:
GradOpRegistrar(const char* op_type, const char* grad_op_type) {
OpRegistry::RegisterGradOp<GradOpType>(op_type, grad_op_type);
} }
}; };
...@@ -268,30 +140,30 @@ class OpKernelRegistrar : public Registrar { ...@@ -268,30 +140,30 @@ class OpKernelRegistrar : public Registrar {
/** /**
* Macro to register Operator. * Macro to register Operator.
*/ */
#define REGISTER_OP(op_type, op_class, op_maker_class) \ #define REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, \
grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \ __reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \
static ::paddle::framework::OpRegistrar<op_class, op_maker_class> \ class _OpClass_##op_type##_ : public op_class { \
__op_registrar_##op_type##__(#op_type); \ public: \
DEFINE_OP_CLONE_METHOD(_OpClass_##op_type##_); \
DEFINE_OP_CONSTRUCTOR(_OpClass_##op_type##_, op_class); \
}; \
class _OpGradClass_##op_type##_ : public grad_op_class { \
public: \
DEFINE_OP_CLONE_METHOD(_OpGradClass_##op_type##_); \
DEFINE_OP_CONSTRUCTOR(_OpGradClass_##op_type##_, grad_op_class); \
}; \
static ::paddle::framework::OpRegistrar< \
_OpClass_##op_type##_, op_maker_class, _OpGradClass_##op_type##_> \
__op_registrar_##op_type##__(#op_type, #grad_op_type); \
int TouchOpRegistrar_##op_type() { \ int TouchOpRegistrar_##op_type() { \
__op_registrar_##op_type##__.Touch(); \ __op_registrar_##op_type##__.Touch(); \
return 0; \ return 0; \
} }
/** #define REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) \
* Macro to register Gradient Operator. REGISTER_OP(op_type, op_class, op_maker_class, , ::paddle::framework::NOP)
*/
#define REGISTER_GRADIENT_OP(op_type, grad_op_type, grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##op_type##_##grad_op_type, \
"REGISTER_GRADIENT_OP must be called in global namespace"); \
static ::paddle::framework::GradOpRegistrar<grad_op_class> \
__op_gradient_registrar_##op_type##_##grad_op_type##__(#op_type, \
#grad_op_type); \
int TouchOpGradientRegistrar_##op_type() { \
__op_gradient_registrar_##op_type##_##grad_op_type##__.Touch(); \
return 0; \
}
/** /**
* Macro to register OperatorKernel. * Macro to register OperatorKernel.
...@@ -307,14 +179,6 @@ class OpKernelRegistrar : public Registrar { ...@@ -307,14 +179,6 @@ class OpKernelRegistrar : public Registrar {
return 0; \ return 0; \
} }
/**
* Macro to Forbid user register Gradient Operator.
*/
#define NO_GRADIENT(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##op_type##_##op_type##_grad, \
"NO_GRADIENT must be called in global namespace")
#define REGISTER_OP_GPU_KERNEL(op_type, ...) \ #define REGISTER_OP_GPU_KERNEL(op_type, ...) \
REGISTER_OP_KERNEL(op_type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__) REGISTER_OP_KERNEL(op_type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
...@@ -322,7 +186,8 @@ class OpKernelRegistrar : public Registrar { ...@@ -322,7 +186,8 @@ class OpKernelRegistrar : public Registrar {
REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__) REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
/** /**
* Macro to mark what Operator and Kernel we will use and tell the compiler to * Macro to mark what Operator and Kernel
* we will use and tell the compiler to
* link them into target. * link them into target.
*/ */
#define USE_OP_ITSELF(op_type) \ #define USE_OP_ITSELF(op_type) \
...@@ -333,23 +198,6 @@ class OpKernelRegistrar : public Registrar { ...@@ -333,23 +198,6 @@ class OpKernelRegistrar : public Registrar {
static int use_op_itself_##op_type##_ __attribute__((unused)) = \ static int use_op_itself_##op_type##_ __attribute__((unused)) = \
TouchOpRegistrar_##op_type() TouchOpRegistrar_##op_type()
// TODO(fengjiayi): Most ops' gradient op have not been compeleted. So we use
// `NO_GRAD` to disable micro USE_OP_GRADIENT(op_type). Otherwise the code can't
// be compiled. `NO_GRAD` should be removed after all gradient ops are
// compeleted.
#define NO_GRAD
#ifndef NO_GRAD
#define USE_OP_GRADIENT(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_gradient_##op_type, \
"USE_OP_GRADIENT must be called in global namespace"); \
extern int TouchOpGradientRegistrar_##op_type(); \
static int use_op_gradient_##op_type##_ __attribute__((unused)) = \
TouchOpGradientRegistrar_##op_type()
#else
#define USE_OP_GRADIENT(op_type)
#endif
#define USE_OP_DEVICE_KERNEL(op_type, DEVICE_TYPE) \ #define USE_OP_DEVICE_KERNEL(op_type, DEVICE_TYPE) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_kernel_##op_type##_##DEVICE_TYPE##__, \ __use_op_kernel_##op_type##_##DEVICE_TYPE##__, \
...@@ -359,7 +207,8 @@ class OpKernelRegistrar : public Registrar { ...@@ -359,7 +207,8 @@ class OpKernelRegistrar : public Registrar {
__attribute__((unused)) = \ __attribute__((unused)) = \
TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE() TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE()
// TODO(fengjiayi): The following macros seems ugly, do we have better method? // TODO(fengjiayi): The following macros
// seems ugly, do we have better method?
#ifdef PADDLE_ONLY_CPU #ifdef PADDLE_ONLY_CPU
#define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU) #define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU)
...@@ -369,18 +218,13 @@ class OpKernelRegistrar : public Registrar { ...@@ -369,18 +218,13 @@ class OpKernelRegistrar : public Registrar {
USE_OP_DEVICE_KERNEL(op_type, GPU) USE_OP_DEVICE_KERNEL(op_type, GPU)
#endif #endif
#define USE_NO_GRAD_OP(op_type) \ #define USE_CPU_ONLY_OP(op_type) \
USE_OP_ITSELF(op_type); \ USE_OP_ITSELF(op_type); \
USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU);
#define USE_CPU_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_DEVICE_KERNEL(op_type, CPU); \
USE_OP_GRADIENT(op_type)
#define USE_OP(op_type) \ #define USE_OP(op_type) \
USE_NO_GRAD_OP(op_type); \ USE_OP_ITSELF(op_type); \
USE_OP_GRADIENT(op_type) USE_OP_KERNEL(op_type)
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -59,11 +59,10 @@ static void BuildVar(const std::string& param_name, ...@@ -59,11 +59,10 @@ static void BuildVar(const std::string& param_name,
var->add_arguments(arg_name); var->add_arguments(arg_name);
} }
} }
REGISTER_OP_WITHOUT_GRADIENT(cos_sim, paddle::framework::CosineOp,
REGISTER_OP(cos_sim, paddle::framework::CosineOp, paddle::framework::CosineOpProtoAndCheckerMaker);
paddle::framework::CosineOpProtoAndCheckerMaker); REGISTER_OP_WITHOUT_GRADIENT(my_test_op, paddle::framework::MyTestOp,
REGISTER_OP(my_test_op, paddle::framework::MyTestOp, paddle::framework::MyTestOpProtoAndCheckerMaker);
paddle::framework::MyTestOpProtoAndCheckerMaker);
TEST(OpRegistry, CreateOp) { TEST(OpRegistry, CreateOp) {
paddle::framework::OpDesc op_desc; paddle::framework::OpDesc op_desc;
......
...@@ -33,14 +33,6 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const { ...@@ -33,14 +33,6 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
} }
#endif #endif
static std::unordered_map<std::string, OpProto>* g_op_protos = nullptr;
std::unordered_map<std::string, OpProto>& OpProtos() {
if (g_op_protos == nullptr) {
g_op_protos = new std::unordered_map<std::string, OpProto>();
}
return *g_op_protos;
}
const std::string& OperatorBase::Input(const std::string& name) const { const std::string& OperatorBase::Input(const std::string& name) const {
auto& ins = Inputs(name); auto& ins = Inputs(name);
PADDLE_ENFORCE_EQ(ins.size(), 1UL, PADDLE_ENFORCE_EQ(ins.size(), 1UL,
...@@ -149,14 +141,18 @@ std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const { ...@@ -149,14 +141,18 @@ std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
} }
return ret_val; return ret_val;
} }
auto it = OpProtos().find(type_); auto it = OpRegistry::op_info_map().find(type_);
PADDLE_ENFORCE( PADDLE_ENFORCE(
it != OpProtos().end(), it != OpRegistry::op_info_map().end(),
"Operator %s not registered, cannot figure out intermediate outputs", "Operator %s not registered, cannot figure out intermediate outputs",
type_); type_);
PADDLE_ENFORCE(
it->second.proto_ != nullptr,
"Operator %s has no OpProto, cannot figure out intermediate outputs",
type_);
// get all OpProto::Var for outputs // get all OpProto::Var for outputs
for (auto& o : it->second.outputs()) { for (auto& o : it->second.proto_->outputs()) {
// ignore all intermediate output // ignore all intermediate output
if (o.intermediate()) continue; if (o.intermediate()) continue;
auto out = outputs_.find(o.name()); auto out = outputs_.find(o.name());
...@@ -168,5 +164,43 @@ std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const { ...@@ -168,5 +164,43 @@ std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
return ret_val; return ret_val;
} }
void OpProtoAndCheckerMaker::Validate() {
validated_ = true;
CheckNoDuplicatedInOutAttrs();
}
OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddInput(
const std::string& name, const std::string& comment) {
auto* input = proto_->add_inputs();
input->set_name(name);
input->set_comment(comment);
return OpProtoAndCheckerMaker::VariableBuilder{input};
}
OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddOutput(
const std::string& name, const std::string& comment) {
auto* output = proto_->add_outputs();
output->set_name(name);
output->set_comment(comment);
return OpProtoAndCheckerMaker::VariableBuilder{output};
}
void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() {
std::unordered_set<std::string> names;
auto checker = [&](const std::string& name) {
PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name);
names.insert(name);
};
for (auto& attr : proto_->attrs()) {
checker(attr.name());
}
for (auto& input : proto_->inputs()) {
checker(input.name());
}
for (auto& output : proto_->outputs()) {
checker(output.name());
}
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -50,8 +50,6 @@ inline std::string GradVarName(const std::string& var_name) { ...@@ -50,8 +50,6 @@ inline std::string GradVarName(const std::string& var_name) {
return var_name + kGradVarSuffix; return var_name + kGradVarSuffix;
} }
extern std::unordered_map<std::string, OpProto>& OpProtos();
class OperatorBase; class OperatorBase;
class InferShapeContext; class InferShapeContext;
class ExecutionContext; class ExecutionContext;
...@@ -69,10 +67,6 @@ class OperatorBase { ...@@ -69,10 +67,6 @@ class OperatorBase {
OperatorBase(const std::string& type, const VarNameMap& inputs, OperatorBase(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs); const VarNameMap& outputs, const AttributeMap& attrs);
OperatorBase(const OperatorBase& o) = delete;
OperatorBase& operator=(const OperatorBase& o) = delete;
OperatorBase(OperatorBase&& o) = delete;
virtual ~OperatorBase() {} virtual ~OperatorBase() {}
template <typename T> template <typename T>
...@@ -99,6 +93,8 @@ class OperatorBase { ...@@ -99,6 +93,8 @@ class OperatorBase {
/// rename inputs outputs name /// rename inputs outputs name
void Rename(const std::string& old_name, const std::string& new_name); void Rename(const std::string& old_name, const std::string& new_name);
const VarNameMap& Inputs() const { return inputs_; }
const VarNameMap& Outputs() const { return outputs_; }
//! Get a input with argument's name described in `op_proto` //! Get a input with argument's name described in `op_proto`
const std::string& Input(const std::string& name) const; const std::string& Input(const std::string& name) const;
//! Get a input which has multiple variables. //! Get a input which has multiple variables.
...@@ -112,13 +108,18 @@ class OperatorBase { ...@@ -112,13 +108,18 @@ class OperatorBase {
virtual std::vector<std::string> OutputVars(bool has_intermediate) const; virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
std::string Type() const { return type_; } const std::string& Type() const { return type_; }
void SetType(const std::string& type) { type_ = type; }
const AttributeMap& Attrs() const { return attrs_; } const AttributeMap& Attrs() const { return attrs_; }
public: // Return a new operator instance, which is as same as this.
// Use unique_ptr to prevent caller forget to delete this pointer.
virtual std::unique_ptr<OperatorBase> Clone() const = 0;
protected:
std::string type_; std::string type_;
// NOTE: in case of OpGrad, inputs_ contains: // NOTE: in case of OpGrad, inputs_ contains:
// I (Inputs) // I (Inputs)opear
// O (Outputs) // O (Outputs)
// OG (Output Gradients) // OG (Output Gradients)
VarNameMap inputs_; VarNameMap inputs_;
...@@ -129,6 +130,102 @@ class OperatorBase { ...@@ -129,6 +130,102 @@ class OperatorBase {
AttributeMap attrs_; AttributeMap attrs_;
}; };
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
// register it. i.e. `Clone` method is not needed to define by yourself.
#define DEFINE_OP_CLONE_METHOD(CLS) \
std::unique_ptr<OperatorBase> Clone() const final { \
return std::unique_ptr<OperatorBase>(new CLS(*this)); \
}
// Macro for define a default constructor for Operator.
// You can also use
// using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS) \
CLS(const std::string& type, const VarNameMap& inputs, \
const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \
: PARENT_CLS(type, inputs, outputs, attrs) {}
class NOP : public OperatorBase {
public:
using OperatorBase::OperatorBase;
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {}
std::unique_ptr<OperatorBase> Clone() const override {
return std::unique_ptr<OperatorBase>(new NOP(*this));
}
};
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
public:
OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: proto_(proto), op_checker_(op_checker) {}
~OpProtoAndCheckerMaker() {
PADDLE_ENFORCE(validated_, "should call Validate after build");
}
void Validate();
protected:
struct VariableBuilder {
OpProto::Var* var_;
VariableBuilder& AsDuplicable() {
var_->set_duplicable(true);
return *this;
}
VariableBuilder& AsIntermediate() {
var_->set_intermediate(true);
return *this;
}
// TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it
// means that input/output is not needed when calculate gradient. It does
// not mean no gradient when backward. It should be changed soon.
VariableBuilder& AsNoGradient() {
var_->set_no_gradient(true);
return *this;
}
};
VariableBuilder AddInput(const std::string& name, const std::string& comment);
VariableBuilder AddOutput(const std::string& name,
const std::string& comment);
template <typename T>
TypedAttrChecker<T>& AddAttr(const std::string& name,
const std::string& comment,
bool generated = false) {
auto* attr = proto_->add_attrs();
attr->set_name(name);
attr->set_comment(comment);
attr->set_generated(generated);
attr->set_type(AttrTypeID<T>());
return op_checker_->AddAttrChecker<T>(name);
}
void AddComment(const std::string& comment) { proto_->set_comment(comment); }
private:
void CheckNoDuplicatedInOutAttrs();
OpProto* proto_;
OpAttrChecker* op_checker_;
bool validated_{false};
};
class NOPMaker : public OpProtoAndCheckerMaker {
public:
NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {}
};
class InferShapeContext { class InferShapeContext {
public: public:
InferShapeContext(const OperatorBase& op, const Scope& scope) InferShapeContext(const OperatorBase& op, const Scope& scope)
...@@ -210,7 +307,7 @@ class InferShapeContext { ...@@ -210,7 +307,7 @@ class InferShapeContext {
[&](const std::string& sub_name) { [&](const std::string& sub_name) {
auto var = scope_.FindVar(sub_name); auto var = scope_.FindVar(sub_name);
PADDLE_ENFORCE_NOT_NULL( PADDLE_ENFORCE_NOT_NULL(
var, "MultiOutput(%s:%s) should not be nullptr", name, var, "MultiOutput(%s:%s) should not be nullptr.", name,
sub_name); sub_name);
return var->GetMutable<T>(); return var->GetMutable<T>();
}); });
......
...@@ -65,8 +65,9 @@ static void BuildVar(const std::string& param_name, ...@@ -65,8 +65,9 @@ static void BuildVar(const std::string& param_name,
} }
} }
REGISTER_OP(test_operator, paddle::framework::OpWithoutKernelTest, REGISTER_OP_WITHOUT_GRADIENT(
paddle::framework::OpeWithoutKernelTestProtoAndCheckerMaker); test_operator, paddle::framework::OpWithoutKernelTest,
paddle::framework::OpeWithoutKernelTestProtoAndCheckerMaker);
TEST(OperatorBase, all) { TEST(OperatorBase, all) {
paddle::framework::OpDesc op_desc; paddle::framework::OpDesc op_desc;
...@@ -184,8 +185,9 @@ class CPUKernalMultiInputsTest : public OpKernel { ...@@ -184,8 +185,9 @@ class CPUKernalMultiInputsTest : public OpKernel {
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
REGISTER_OP(op_with_kernel, paddle::framework::OpWithKernelTest, REGISTER_OP_WITHOUT_GRADIENT(
paddle::framework::OpKernelTestProtoAndCheckerMaker); op_with_kernel, paddle::framework::OpWithKernelTest,
paddle::framework::OpKernelTestProtoAndCheckerMaker);
REGISTER_OP_CPU_KERNEL(op_with_kernel, REGISTER_OP_CPU_KERNEL(op_with_kernel,
paddle::framework::CPUKernelTest<float, float>); paddle::framework::CPUKernelTest<float, float>);
...@@ -210,8 +212,9 @@ TEST(OpKernel, all) { ...@@ -210,8 +212,9 @@ TEST(OpKernel, all) {
ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1); ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1);
} }
REGISTER_OP(op_multi_inputs_with_kernel, paddle::framework::OpWithKernelTest, REGISTER_OP_WITHOUT_GRADIENT(
paddle::framework::OpKernelTestMultiInputsProtoAndCheckerMaker); op_multi_inputs_with_kernel, paddle::framework::OpWithKernelTest,
paddle::framework::OpKernelTestMultiInputsProtoAndCheckerMaker);
REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel, REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel,
paddle::framework::CPUKernalMultiInputsTest); paddle::framework::CPUKernalMultiInputsTest);
...@@ -242,3 +245,21 @@ TEST(OpKernel, multi_inputs) { ...@@ -242,3 +245,21 @@ TEST(OpKernel, multi_inputs) {
auto op = paddle::framework::OpRegistry::CreateOp(op_desc); auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
op->Run(scope, cpu_device_context); op->Run(scope, cpu_device_context);
} }
class OperatorClone : public paddle::framework::OperatorBase {
public:
DEFINE_OP_CLONE_METHOD(OperatorClone);
OperatorClone(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs,
const paddle::framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void InferShape(const paddle::framework::Scope& scope) const override {}
void Run(const paddle::framework::Scope& scope,
const paddle::platform::DeviceContext& dev_ctx) const override {}
};
TEST(Operator, Clone) {
OperatorClone a("ABC", {}, {}, {});
auto b = a.Clone();
ASSERT_EQ(a.Type(), b->Type());
}
\ No newline at end of file
...@@ -20,6 +20,7 @@ limitations under the License. */ ...@@ -20,6 +20,7 @@ limitations under the License. */
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/tensor_py.h" #include "paddle/framework/tensor_py.h"
#include "paddle/operators/net_op.h" #include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
#include "paddle/string/to_string.h" #include "paddle/string/to_string.h"
...@@ -30,8 +31,8 @@ limitations under the License. */ ...@@ -30,8 +31,8 @@ limitations under the License. */
namespace py = pybind11; namespace py = pybind11;
USE_OP(add_two); USE_OP(add_two);
USE_CPU_OP(onehot_cross_entropy); USE_CPU_ONLY_OP(onehot_cross_entropy);
USE_NO_GRAD_OP(sgd); USE_OP(sgd);
USE_OP(mul); USE_OP(mul);
USE_OP(mean); USE_OP(mean);
USE_OP(sigmoid); USE_OP(sigmoid);
...@@ -53,15 +54,15 @@ void ExposeOperator(ClassType &m) { ...@@ -53,15 +54,15 @@ void ExposeOperator(ClassType &m) {
.def("run", &ClassType::type::Run) .def("run", &ClassType::type::Run)
.def("type", .def("type",
[](const typename ClassType::type &op) -> std::string { [](const typename ClassType::type &op) -> std::string {
return op.type_; return op.Type();
}) })
.def("outputs", .def("outputs",
[](const typename ClassType::type &op) [](const typename ClassType::type &op)
-> std::map<std::string, std::vector<std::string>> { -> std::map<std::string, std::vector<std::string>> {
return op.outputs_; return op.Outputs();
}) })
.def("inputs", .def("inputs",
[](const typename ClassType::type &op) { return op.inputs_; }) [](const typename ClassType::type &op) { return op.Inputs(); })
.def("__str__", &ClassType::type::DebugString) .def("__str__", &ClassType::type::DebugString)
.def("no_intermediate_outputs", .def("no_intermediate_outputs",
[](const typename ClassType::type &op) { [](const typename ClassType::type &op) {
...@@ -160,13 +161,16 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -160,13 +161,16 @@ All parameter, weight, gradient are variables in Paddle.
//! @note: Be careful! PyBind will return std::string as an unicode, not //! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python. //! Python str. If you want a str object, you should cast them in Python.
m.def("get_all_op_protos", []() -> std::vector<py::bytes> { m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
auto &protos = OpProtos(); auto &op_info_map = OpRegistry::op_info_map();
std::vector<py::bytes> ret_values; std::vector<py::bytes> ret_values;
for (auto it = protos.begin(); it != protos.end(); ++it) { for (auto it = op_info_map.begin(); it != op_info_map.end(); ++it) {
PADDLE_ENFORCE(it->second.IsInitialized(), const OpProto *proto = it->second.proto_;
"OpProto must all be initialized"); if (proto == nullptr) {
continue;
}
PADDLE_ENFORCE(proto->IsInitialized(), "OpProto must all be initialized");
std::string str; std::string str;
PADDLE_ENFORCE(it->second.SerializeToString(&str), PADDLE_ENFORCE(proto->SerializeToString(&str),
"Serialize OpProto Error. This could be a bug of Paddle."); "Serialize OpProto Error. This could be a bug of Paddle.");
ret_values.push_back(py::bytes(str)); ret_values.push_back(py::bytes(str));
} }
...@@ -229,7 +233,7 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -229,7 +233,7 @@ All parameter, weight, gradient are variables in Paddle.
net.def_static("create", net.def_static("create",
[]() -> std::shared_ptr<operators::NetOp> { []() -> std::shared_ptr<operators::NetOp> {
auto retv = std::make_shared<operators::NetOp>(); auto retv = std::make_shared<operators::NetOp>();
retv->type_ = "plain_net"; retv->SetType("plain_net");
return retv; return retv;
}) })
.def("add_op", &operators::NetOp::AddOp) .def("add_op", &operators::NetOp::AddOp)
...@@ -238,6 +242,11 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -238,6 +242,11 @@ All parameter, weight, gradient are variables in Paddle.
const std::shared_ptr<operators::NetOp> &net) -> void { const std::shared_ptr<operators::NetOp> &net) -> void {
self.AddOp(std::static_pointer_cast<OperatorBase>(net)); self.AddOp(std::static_pointer_cast<OperatorBase>(net));
}) })
.def("add_op",
[](operators::NetOp &self,
const std::shared_ptr<operators::RecurrentOp> &rnn) -> void {
self.AddOp(std::static_pointer_cast<OperatorBase>(rnn));
})
.def("complete_add_op", &operators::NetOp::CompleteAddOp) .def("complete_add_op", &operators::NetOp::CompleteAddOp)
.def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) { .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
self->CompleteAddOp(); self->CompleteAddOp();
...@@ -245,6 +254,29 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -245,6 +254,29 @@ All parameter, weight, gradient are variables in Paddle.
ExposeOperator(net); ExposeOperator(net);
// recurrent_op
py::class_<operators::RecurrentOp, std::shared_ptr<operators::RecurrentOp>>
rnn(m, "RecurrentOp");
rnn.def_static(
"create",
[](py::bytes protobin) -> std::shared_ptr<operators::RecurrentOp> {
OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
auto rnn_op = OpRegistry::CreateOp(desc);
return std::dynamic_pointer_cast<operators::RecurrentOp>(rnn_op);
})
.def("set_stepnet",
[](operators::RecurrentOp &self,
const std::shared_ptr<operators::NetOp> &net) -> void {
self.set_stepnet(net);
});
ExposeOperator(rnn);
m.def("unique_integer", UniqueIntegerGenerator); m.def("unique_integer", UniqueIntegerGenerator);
m.def("is_compile_gpu", IsCompileGPU); m.def("is_compile_gpu", IsCompileGPU);
......
add_subdirectory(detail) add_subdirectory(detail)
cc_library(memory SRCS memory.cc) cc_library(memory SRCS memory.cc)
cc_library(memcpy SRCS memcpy.cc DEPS device_context) cc_library(memcpy SRCS memcpy.cc)
cc_library(paddle_memory cc_library(paddle_memory
DEPS DEPS
......
...@@ -16,8 +16,6 @@ limitations under the License. */ ...@@ -16,8 +16,6 @@ limitations under the License. */
#include <cstring> // for memcpy #include <cstring> // for memcpy
#include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace memory { namespace memory {
......
...@@ -44,6 +44,8 @@ endfunction() ...@@ -44,6 +44,8 @@ endfunction()
add_subdirectory(math) add_subdirectory(math)
cc_test(gather_test SRCS gather_test.cc DEPS tensor) cc_test(gather_test SRCS gather_test.cc DEPS tensor)
cc_test(scatter_test SRCS scatter_test.cc DEPS tensor)
cc_library(net_op SRCS net_op.cc DEPS op_registry) cc_library(net_op SRCS net_op.cc DEPS op_registry)
cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) cc_test(net_op_test SRCS net_op_test.cc DEPS net_op)
...@@ -64,6 +66,5 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu) ...@@ -64,6 +66,5 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS framework_proto tensor op_registry operator net_op) DEPS framework_proto tensor op_registry operator net_op)
cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op)
op_library(uniform_random_op op_library(uniform_random_op
SRCS uniform_random_op.cc uniform_random_op.cu) SRCS uniform_random_op.cc uniform_random_op.cu)
...@@ -57,8 +57,7 @@ class AddOpGrad : public framework::OperatorWithKernel { ...@@ -57,8 +57,7 @@ class AddOpGrad : public framework::OperatorWithKernel {
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(add_two, ops::AddOp, ops::AddOpMaker); REGISTER_OP(add_two, ops::AddOp, ops::AddOpMaker, add_two_grad, ops::AddOpGrad);
REGISTER_GRADIENT_OP(add_two, add_two_grad, ops::AddOpGrad);
REGISTER_OP_CPU_KERNEL(add_two, REGISTER_OP_CPU_KERNEL(add_two,
ops::AddKernel<paddle::platform::CPUPlace, float>); ops::AddKernel<paddle::platform::CPUPlace, float>);
...@@ -68,12 +68,11 @@ OnehotCrossEntropy Operator. ...@@ -68,12 +68,11 @@ OnehotCrossEntropy Operator.
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(onehot_cross_entropy, ops::OnehotCrossEntropyOp, REGISTER_OP(onehot_cross_entropy, ops::OnehotCrossEntropyOp,
ops::OnehotCrossEntropyOpMaker); ops::OnehotCrossEntropyOpMaker, onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
onehot_cross_entropy, onehot_cross_entropy,
ops::OnehotCrossEntropyOpKernel<paddle::platform::CPUPlace, float>); ops::OnehotCrossEntropyOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_GRADIENT_OP(onehot_cross_entropy, onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
onehot_cross_entropy_grad, onehot_cross_entropy_grad,
ops::OnehotCrossEntropyGradientOpKernel<paddle::platform::CPUPlace, float>); ops::OnehotCrossEntropyGradientOpKernel<paddle::platform::CPUPlace, float>);
...@@ -46,7 +46,8 @@ The output will have the same size with input. ...@@ -46,7 +46,8 @@ The output will have the same size with input.
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(fill_zeros_like, ops::FillZerosLikeOp, ops::FillZerosLikeOpMaker); REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, ops::FillZerosLikeOp,
ops::FillZerosLikeOpMaker);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
fill_zeros_like, fill_zeros_like,
ops::FillZerosLikeKernel<paddle::platform::CPUPlace, float>); ops::FillZerosLikeKernel<paddle::platform::CPUPlace, float>);
...@@ -29,7 +29,7 @@ void CPUGather(const T* params, const int* indices, const int slice_size, ...@@ -29,7 +29,7 @@ void CPUGather(const T* params, const int* indices, const int slice_size,
const int index_size, T* output) { const int index_size, T* output) {
const size_t slice_bytes = slice_size * sizeof(T); const size_t slice_bytes = slice_size * sizeof(T);
for (size_t i = 0; i < index_size; ++i) { for (int i = 0; i < index_size; ++i) {
int index_ = indices[i]; int index_ = indices[i];
memcpy(output + i * slice_size, params + index_ * slice_size, slice_bytes); memcpy(output + i * slice_size, params + index_ * slice_size, slice_bytes);
} }
...@@ -60,7 +60,7 @@ void Gather(const platform::Place& place, const paddle::framework::Tensor* src, ...@@ -60,7 +60,7 @@ void Gather(const platform::Place& place, const paddle::framework::Tensor* src,
// slice size // slice size
int slice_size = 1; int slice_size = 1;
for (size_t i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i]; for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
// Gathering // Gathering
if (platform::is_cpu_place(place)) { if (platform::is_cpu_place(place)) {
......
...@@ -35,7 +35,7 @@ TEST(Gather, GatherData) { ...@@ -35,7 +35,7 @@ TEST(Gather, GatherData) {
p_src = src->mutable_data<int>(make_ddim({3, 4}), CPUPlace()); p_src = src->mutable_data<int>(make_ddim({3, 4}), CPUPlace());
p_index = index->mutable_data<int>(make_ddim({2}), CPUPlace()); p_index = index->mutable_data<int>(make_ddim({2}), CPUPlace());
for (size_t i = 0; i < 12; ++i) p_src[i] = i; for (int i = 0; i < 12; ++i) p_src[i] = i;
p_index[0] = 1; p_index[0] = 1;
p_index[1] = 0; p_index[1] = 0;
...@@ -43,6 +43,6 @@ TEST(Gather, GatherData) { ...@@ -43,6 +43,6 @@ TEST(Gather, GatherData) {
Gather<int>(CPUPlace(), src, index, output); Gather<int>(CPUPlace(), src, index, output);
for (size_t i = 0; i < 4; ++i) EXPECT_EQ(p_output[i], i + 4); for (int i = 0; i < 4; ++i) EXPECT_EQ(p_output[i], i + 4);
for (size_t i = 4; i < 8; ++i) EXPECT_EQ(p_output[i], i - 4); for (int i = 4; i < 8; ++i) EXPECT_EQ(p_output[i], i - 4);
} }
...@@ -81,5 +81,6 @@ Use to initialize tensor with gaussian random generator. ...@@ -81,5 +81,6 @@ Use to initialize tensor with gaussian random generator.
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(gaussian_random, ops::GaussianRandomOp, ops::GaussianRandomOpMaker); REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
ops::GaussianRandomOpMaker);
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::GaussianRandomKernel<float>); REGISTER_OP_CPU_KERNEL(gaussian_random, ops::GaussianRandomKernel<float>);
if(WITH_MKLML)
set(BLAS_LIB mklml)
else()
set(BLAS_LIB cblas)
endif()
if(WITH_GPU) if(WITH_GPU)
nv_library(math_function SRCS math_function.cc math_function.cu DEPS ${BLAS_LIB} device_context) nv_library(math_function SRCS math_function.cc math_function.cu DEPS cblas device_context)
else() else()
cc_library(math_function SRCS math_function.cc DEPS ${BLAS_LIB} device_context) cc_library(math_function SRCS math_function.cc DEPS cblas device_context)
endif() endif()
nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
...@@ -54,9 +54,8 @@ class MeanGradOp : public framework::OperatorWithKernel { ...@@ -54,9 +54,8 @@ class MeanGradOp : public framework::OperatorWithKernel {
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(mean, ops::MeanOp, ops::MeanOpMaker); REGISTER_OP(mean, ops::MeanOp, ops::MeanOpMaker, mean_grad, ops::MeanGradOp);
REGISTER_OP_CPU_KERNEL(mean, REGISTER_OP_CPU_KERNEL(mean,
ops::MeanKernel<paddle::platform::CPUPlace, float>); ops::MeanKernel<paddle::platform::CPUPlace, float>);
REGISTER_GRADIENT_OP(mean, mean_grad, ops::MeanGradOp);
REGISTER_OP_CPU_KERNEL(mean_grad, REGISTER_OP_CPU_KERNEL(mean_grad,
ops::MeanGradKernel<paddle::platform::CPUPlace, float>); ops::MeanGradKernel<paddle::platform::CPUPlace, float>);
...@@ -70,7 +70,5 @@ class MulOpGrad : public framework::OperatorWithKernel { ...@@ -70,7 +70,5 @@ class MulOpGrad : public framework::OperatorWithKernel {
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker); REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad);
REGISTER_GRADIENT_OP(mul, mul_grad, ops::MulOpGrad);
REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUPlace, float>); REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUPlace, float>);
...@@ -29,7 +29,7 @@ void NetOp::CompleteAddOp(bool calc) { ...@@ -29,7 +29,7 @@ void NetOp::CompleteAddOp(bool calc) {
std::set<std::string> input_set; std::set<std::string> input_set;
std::set<std::string> output_set; std::set<std::string> output_set;
for (auto& op : ops_) { for (auto& op : ops_) {
for (auto& ipt : op->inputs_) { for (auto& ipt : op->Inputs()) {
for (auto& var_name : ipt.second) { for (auto& var_name : ipt.second) {
if (!Contains(output_set, var_name)) { // Not other op's output if (!Contains(output_set, var_name)) { // Not other op's output
input_set.insert(var_name); input_set.insert(var_name);
...@@ -39,7 +39,7 @@ void NetOp::CompleteAddOp(bool calc) { ...@@ -39,7 +39,7 @@ void NetOp::CompleteAddOp(bool calc) {
} }
} }
for (auto& opt : op->outputs_) { for (auto& opt : op->Outputs()) {
for (auto& var_name : opt.second) { for (auto& var_name : opt.second) {
output_set.insert(var_name); output_set.insert(var_name);
} }
...@@ -85,7 +85,14 @@ NetOp::NetOp(const std::string& type, ...@@ -85,7 +85,14 @@ NetOp::NetOp(const std::string& type,
const framework::OperatorBase::VarNameMap& inputs, const framework::OperatorBase::VarNameMap& inputs,
const framework::OperatorBase::VarNameMap& outputs, const framework::OperatorBase::VarNameMap& outputs,
const framework::AttributeMap& attrs) const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : framework::OperatorBase(type, inputs, outputs, attrs) {}
std::unique_ptr<framework::OperatorBase> NetOp::Clone() const {
PADDLE_ENFORCE(
add_op_done_,
"Must clone a sealed NetOp, invoke Net::CompleteAddOp before clone");
return std::unique_ptr<OperatorBase>(new NetOp(*this));
}
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -41,6 +41,18 @@ class NetOp : public framework::OperatorBase { ...@@ -41,6 +41,18 @@ class NetOp : public framework::OperatorBase {
NetOp(const std::string& type, const VarNameMap& inputs, NetOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const framework::AttributeMap& attrs); const VarNameMap& outputs, const framework::AttributeMap& attrs);
NetOp(const NetOp& o)
: framework::OperatorBase(
static_cast<const framework::OperatorBase&>(o)) {
this->ops_.reserve(o.ops_.size());
std::transform(o.ops_.begin(), o.ops_.end(), std::back_inserter(this->ops_),
[](const std::shared_ptr<OperatorBase>& op)
-> std::shared_ptr<OperatorBase> {
return std::shared_ptr<OperatorBase>(op->Clone());
});
this->CompleteAddOp();
}
/** /**
* Infer all the operators' input and output variables' shapes, will be called * Infer all the operators' input and output variables' shapes, will be called
* before every mini-batch * before every mini-batch
...@@ -98,6 +110,8 @@ class NetOp : public framework::OperatorBase { ...@@ -98,6 +110,8 @@ class NetOp : public framework::OperatorBase {
bool IsNetOp() const override; bool IsNetOp() const override;
std::vector<std::string> OutputVars(bool has_intermediate) const override; std::vector<std::string> OutputVars(bool has_intermediate) const override;
std::unique_ptr<framework::OperatorBase> Clone() const override;
std::vector<std::shared_ptr<OperatorBase>> ops_; std::vector<std::shared_ptr<OperatorBase>> ops_;
private: private:
......
...@@ -13,6 +13,7 @@ static int run_cnt = 0; ...@@ -13,6 +13,7 @@ static int run_cnt = 0;
class TestOp : public framework::OperatorBase { class TestOp : public framework::OperatorBase {
public: public:
using framework::OperatorBase::OperatorBase; using framework::OperatorBase::OperatorBase;
DEFINE_OP_CLONE_METHOD(TestOp);
void InferShape(const Scope& scope) const override { ++infer_shape_cnt; } void InferShape(const Scope& scope) const override { ++infer_shape_cnt; }
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::DeviceContext& dev_ctx) const override {
...@@ -20,13 +21,6 @@ class TestOp : public framework::OperatorBase { ...@@ -20,13 +21,6 @@ class TestOp : public framework::OperatorBase {
} }
}; };
class EmptyOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, const DeviceContext& dev_ctx) const override {}
};
template <typename T> template <typename T>
void AssertSameVectorWithoutOrder(const std::vector<T>& expected, void AssertSameVectorWithoutOrder(const std::vector<T>& expected,
const std::vector<T>& actual) { const std::vector<T>& actual) {
...@@ -56,8 +50,8 @@ TEST(OpKernel, all) { ...@@ -56,8 +50,8 @@ TEST(OpKernel, all) {
net->CompleteAddOp(); net->CompleteAddOp();
AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"}, AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"},
net->inputs_.at(NetOp::kAll)); net->Inputs(NetOp::kAll));
AssertSameVectorWithoutOrder({"y", "z"}, net->outputs_.at(NetOp::kAll)); AssertSameVectorWithoutOrder({"y", "z"}, net->Outputs(NetOp::kAll));
auto final_outs = net->OutputVars(false); auto final_outs = net->OutputVars(false);
...@@ -67,9 +61,9 @@ TEST(OpKernel, all) { ...@@ -67,9 +61,9 @@ TEST(OpKernel, all) {
TEST(NetOp, insert_op) { TEST(NetOp, insert_op) {
NetOp net; NetOp net;
auto op1 = std::shared_ptr<EmptyOp>( auto op1 = std::shared_ptr<framework::NOP>(
new EmptyOp("empty", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}}, new framework::NOP("empty", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}},
{{"Out", {"y"}}}, {})); {{"Out", {"y"}}}, {}));
net.AddOp(op1); net.AddOp(op1);
net.InsertOp(0, op1); net.InsertOp(0, op1);
ASSERT_EQ(2UL, net.ops_.size()); ASSERT_EQ(2UL, net.ops_.size());
...@@ -77,5 +71,21 @@ TEST(NetOp, insert_op) { ...@@ -77,5 +71,21 @@ TEST(NetOp, insert_op) {
ASSERT_EQ(3UL, net.ops_.size()); ASSERT_EQ(3UL, net.ops_.size());
} }
TEST(NetOp, Clone) {
NetOp net;
net.AddOp(
std::shared_ptr<framework::NOP>(new framework::NOP{"empty", {}, {}, {}}));
net.AddOp(std::shared_ptr<framework::NOP>(
new framework::NOP{"empty2", {}, {}, {}}));
net.CompleteAddOp(true);
auto new_net_op = net.Clone();
ASSERT_NE(new_net_op, nullptr);
ASSERT_TRUE(new_net_op->IsNetOp());
auto* new_net = static_cast<NetOp*>(new_net_op.get());
ASSERT_EQ(2, new_net->ops_.size());
ASSERT_EQ(new_net->ops_[0]->Type(), "empty");
ASSERT_EQ(new_net->ops_[1]->Type(), "empty2");
}
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -36,15 +36,13 @@ void RecurrentAlgorithm::InferShape(const Scope& scope) const { ...@@ -36,15 +36,13 @@ void RecurrentAlgorithm::InferShape(const Scope& scope) const {
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_, rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
true /*infer_shape_mode*/); true /*infer_shape_mode*/);
InitMemories(step_scopes[0], true /*infer_shape_mode*/); InitMemories(step_scopes[0], true /*infer_shape_mode*/);
Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (size_t i = 0; i < seq_len_; i++) { for (size_t i = 0; i < seq_len_; i++) {
if (i > 0) { if (i > 0) {
rnn::LinkMemories(step_scopes, arg_->memories, i, -1, rnn::LinkMemories(step_scopes, arg_->memories, i, -1,
true /*infer_shape_mode*/); true /*infer_shape_mode*/);
} }
net->GetMutable<NetOp>()->InferShape(*step_scopes[i]); (*stepnet_)->InferShape(*step_scopes[i]);
} }
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_, rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
true /*infer_shape_mode*/); true /*infer_shape_mode*/);
...@@ -56,7 +54,6 @@ void RecurrentAlgorithm::Run(const Scope& scope, ...@@ -56,7 +54,6 @@ void RecurrentAlgorithm::Run(const Scope& scope,
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_, rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
false /*infer_shape_mode*/); false /*infer_shape_mode*/);
InitMemories(step_scopes[0], false /*infer_shape_mode*/); InitMemories(step_scopes[0], false /*infer_shape_mode*/);
Variable* net = scope.FindVar(arg_->step_net);
for (size_t step_id = 0; step_id < seq_len_; step_id++) { for (size_t step_id = 0; step_id < seq_len_; step_id++) {
// create output alias variables // create output alias variables
...@@ -64,7 +61,7 @@ void RecurrentAlgorithm::Run(const Scope& scope, ...@@ -64,7 +61,7 @@ void RecurrentAlgorithm::Run(const Scope& scope,
rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1, rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1,
false /*infer_shape_mode*/); false /*infer_shape_mode*/);
} }
net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx); (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
} }
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_, rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
false /*infer_shape_mode*/); false /*infer_shape_mode*/);
...@@ -78,18 +75,16 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const { ...@@ -78,18 +75,16 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
auto step_scopes = step_scopes_var->GetMutable<std::vector<Scope*>>(); auto step_scopes = step_scopes_var->GetMutable<std::vector<Scope*>>();
// Now all variables in scope must be created outside of op. // Now all variables in scope must be created outside of op.
auto net_var = scope.FindVar(arg_->step_net); PADDLE_ENFORCE_NOT_NULL(stepnet_);
PADDLE_ENFORCE(net_var != nullptr, "no stepnet called %s in scope", PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs");
arg_->step_net); PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "net_op has no outputs");
auto net_op = net_var->GetMutable<NetOp>();
PADDLE_ENFORCE(!net_op->outputs_.empty(), "net_op has no outputs");
if (seq_len_ > step_scopes->size()) { if (seq_len_ > step_scopes->size()) {
for (size_t i = step_scopes->size(); i < seq_len_; ++i) { for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
auto& step_scope = scope.NewScope(); auto& step_scope = scope.NewScope();
// create step net's temp inputs // create step net's temp inputs
for (auto& input : net_op->inputs_) { for (auto& input : (*stepnet_)->Inputs()) {
// the weight are located in parent scope // the weight are located in parent scope
for (auto& var_name : input.second) { for (auto& var_name : input.second) {
if (!step_scope.FindVar(var_name)) { if (!step_scope.FindVar(var_name)) {
...@@ -98,7 +93,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const { ...@@ -98,7 +93,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
} }
} }
// create stepnet's outputs // create stepnet's outputs
for (const auto& output : net_op->outputs_) { for (const auto& output : (*stepnet_)->Outputs()) {
for (auto& var_name : output.second) { for (auto& var_name : output.second) {
step_scope.NewVar(var_name); step_scope.NewVar(var_name);
} }
...@@ -140,9 +135,8 @@ RecurrentOp::RecurrentOp(const std::string& type, ...@@ -140,9 +135,8 @@ RecurrentOp::RecurrentOp(const std::string& type,
const framework::OperatorBase::VarNameMap& outputs, const framework::OperatorBase::VarNameMap& outputs,
const framework::AttributeMap& attrs) const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) { : OperatorBase(type, inputs, outputs, attrs) {
std::unique_ptr<rnn::Argument> arg(new rnn::Argument()); rnn::InitArgument(kArgName, &arg_, *this);
rnn::InitArgument(kArgName, arg.get(), *this); alg_.Init(&arg_, &stepnet_);
alg_.Init(std::move(arg));
} }
class RecurrentAlgorithmProtoAndCheckerMaker class RecurrentAlgorithmProtoAndCheckerMaker
...@@ -158,7 +152,6 @@ class RecurrentAlgorithmProtoAndCheckerMaker ...@@ -158,7 +152,6 @@ class RecurrentAlgorithmProtoAndCheckerMaker
.AsDuplicable(); .AsDuplicable();
AddInput(name.boot_memories, "variables to initialize memories.") AddInput(name.boot_memories, "variables to initialize memories.")
.AsDuplicable(); .AsDuplicable();
AddInput(name.step_net, "network shared by all steps.");
AddOutput(name.outlinks, "the outputs that need to concated for all steps.") AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
.AsDuplicable(); .AsDuplicable();
...@@ -180,14 +173,12 @@ void RecurrentGradientAlgorithm::Run( ...@@ -180,14 +173,12 @@ void RecurrentGradientAlgorithm::Run(
auto step_scopes = GetStepScopes(scope); auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_, rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
false /*infer_shape_mode*/); false /*infer_shape_mode*/);
Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) { for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
if (static_cast<size_t>(step_id) != seq_len_ - 1) { if (static_cast<size_t>(step_id) != seq_len_ - 1) {
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1, rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
false /*infer_shape_mode*/); false /*infer_shape_mode*/);
} }
net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx); (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
} }
LinkBootMemoryGradients(step_scopes[0], false); LinkBootMemoryGradients(step_scopes[0], false);
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_, rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
...@@ -219,14 +210,12 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const { ...@@ -219,14 +210,12 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
auto step_scopes = GetStepScopes(scope); auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_, rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
true /*infer_shape_mode*/); true /*infer_shape_mode*/);
Variable* net = scope.FindVar(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) { for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
if (static_cast<size_t>(step_id) != seq_len_ - 1) { if (static_cast<size_t>(step_id) != seq_len_ - 1) {
rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1, rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
true /*infer_shape_mode*/); true /*infer_shape_mode*/);
} }
net->GetMutable<NetOp>()->InferShape(*step_scopes[step_id]); (*stepnet_)->InferShape(*step_scopes[step_id]);
} }
rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_, rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
true /*infer_shape_mode*/); true /*infer_shape_mode*/);
...@@ -238,13 +227,13 @@ RecurrentGradientOp::RecurrentGradientOp( ...@@ -238,13 +227,13 @@ RecurrentGradientOp::RecurrentGradientOp(
const framework::OperatorBase::VarNameMap& outputs, const framework::OperatorBase::VarNameMap& outputs,
const framework::AttributeMap& attrs) const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) { : OperatorBase(type, inputs, outputs, attrs) {
std::unique_ptr<rnn::Argument> arg(new rnn::Argument()); rnn::InitArgument(kArgName, &arg_, *this);
rnn::InitArgument(kArgName, arg.get(), *this); alg_.Init(&arg_, &stepnet_);
alg_.Init(std::move(arg));
} }
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
REGISTER_OP(recurrent_op, paddle::operators::RecurrentOp, REGISTER_OP_WITHOUT_GRADIENT(
paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker); recurrent_op, paddle::operators::RecurrentOp,
paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker);
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#pragma once #pragma once
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/rnn/recurrent_op_utils.h" #include "paddle/operators/rnn/recurrent_op_utils.h"
namespace paddle { namespace paddle {
...@@ -33,7 +34,11 @@ class RecurrentAlgorithm { ...@@ -33,7 +34,11 @@ class RecurrentAlgorithm {
void Run(const framework::Scope& scope, void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const; const platform::DeviceContext& dev_ctx) const;
void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); } void Init(rnn::Argument* arg, std::shared_ptr<NetOp>* stepnet) {
PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before.");
arg_ = arg;
stepnet_ = stepnet;
}
/** /**
* InferShape must be called before Run. * InferShape must be called before Run.
...@@ -58,7 +63,8 @@ class RecurrentAlgorithm { ...@@ -58,7 +63,8 @@ class RecurrentAlgorithm {
void InitMemories(framework::Scope* step_scopes, bool infer_shape_mode) const; void InitMemories(framework::Scope* step_scopes, bool infer_shape_mode) const;
private: private:
std::unique_ptr<rnn::Argument> arg_; std::shared_ptr<NetOp>* stepnet_;
rnn::Argument* arg_;
mutable size_t seq_len_; mutable size_t seq_len_;
}; };
...@@ -74,7 +80,11 @@ class RecurrentGradientAlgorithm { ...@@ -74,7 +80,11 @@ class RecurrentGradientAlgorithm {
* operator. * operator.
*/ */
public: public:
void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); } void Init(rnn::Argument* arg, std::shared_ptr<NetOp>* stepnet) {
PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before.");
arg_ = std::move(arg);
stepnet_ = stepnet;
}
void Run(const framework::Scope& scope, void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const; const platform::DeviceContext& dev_ctx) const;
...@@ -95,17 +105,25 @@ class RecurrentGradientAlgorithm { ...@@ -95,17 +105,25 @@ class RecurrentGradientAlgorithm {
} }
private: private:
std::unique_ptr<rnn::Argument> arg_; rnn::Argument* arg_;
mutable size_t seq_len_; mutable size_t seq_len_;
std::shared_ptr<NetOp>* stepnet_;
}; };
class RecurrentOp final : public framework::OperatorBase { class RecurrentOp : public framework::OperatorBase {
public: public:
RecurrentOp(const std::string& type, const VarNameMap& inputs, RecurrentOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const framework::AttributeMap& attrs); const VarNameMap& outputs, const framework::AttributeMap& attrs);
RecurrentOp(const RecurrentOp& o)
: framework::OperatorBase(
static_cast<const framework::OperatorBase&>(o)) {
// TODO(yuyang18): Implement copy ctor well.
PADDLE_THROW("Not implemented");
}
/** /**
* InferShape must be called before Run. * InferShape must be called before Run.
*/ */
void InferShape(const framework::Scope& scope) const override { void InferShape(const framework::Scope& scope) const override {
alg_.InferShape(scope); alg_.InferShape(scope);
} }
...@@ -115,18 +133,30 @@ class RecurrentOp final : public framework::OperatorBase { ...@@ -115,18 +133,30 @@ class RecurrentOp final : public framework::OperatorBase {
alg_.Run(scope, dev_ctx); alg_.Run(scope, dev_ctx);
} }
void set_stepnet(std::shared_ptr<NetOp> net) { stepnet_ = net; }
const NetOp& stepnet() const { return *stepnet_; }
static const rnn::ArgumentName kArgName; static const rnn::ArgumentName kArgName;
private: private:
RecurrentAlgorithm alg_; RecurrentAlgorithm alg_;
rnn::Argument arg_;
std::shared_ptr<NetOp> stepnet_;
}; };
class RecurrentGradientOp final : public framework::OperatorBase { class RecurrentGradientOp : public framework::OperatorBase {
public: public:
RecurrentGradientOp(const std::string& type, const VarNameMap& inputs, RecurrentGradientOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const VarNameMap& outputs,
const framework::AttributeMap& attrs); const framework::AttributeMap& attrs);
RecurrentGradientOp(const RecurrentGradientOp& o)
: framework::OperatorBase(
static_cast<const framework::OperatorBase&>(o)) {
// TODO(yuyang18): Implement Copy ctor.
PADDLE_THROW("Not Implemented");
}
/** /**
* InferShape must be called before Run. * InferShape must be called before Run.
*/ */
...@@ -141,8 +171,13 @@ class RecurrentGradientOp final : public framework::OperatorBase { ...@@ -141,8 +171,13 @@ class RecurrentGradientOp final : public framework::OperatorBase {
static const rnn::ArgumentName kArgName; static const rnn::ArgumentName kArgName;
void set_stepnet(const std::shared_ptr<NetOp>& net) { stepnet_ = net; }
const NetOp& stepnet() const { return *stepnet_; }
private: private:
RecurrentGradientAlgorithm alg_; RecurrentGradientAlgorithm alg_;
std::shared_ptr<NetOp> stepnet_;
rnn::Argument arg_;
}; };
} // namespace operators } // namespace operators
......
/*
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "paddle/operators/recurrent_op.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "paddle/framework/ddim.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
using namespace paddle::framework;
class RecurrentGradientAlgorithmTest : public ::testing::Test {
protected:
virtual void SetUp() override {
CreateGlobalVariables();
CreateStepScopes();
CreateStepNet();
CreateRNNGradientAlgorithm();
// segment inputs
SegmentInputs();
// link forward memories
LinkeMemories();
}
virtual void TearDown() override {}
void CreateGlobalVariables() {
// inputs: x
LOG(INFO) << "create global variable x";
Variable* x = scope_.NewVar("x");
DDim dims =
make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
// inputs: h_boot
LOG(INFO) << "create global variable h_boot";
Variable* h_boot = scope_.NewVar("h_boot");
h_boot->GetMutable<Tensor>()->mutable_data<float>(
make_ddim({20 /*batch size*/, 30 /*input dim*/}), platform::CPUPlace());
// inputs: w
LOG(INFO) << "create global variable w";
Variable* w = scope_.NewVar("rnn/w");
w->GetMutable<Tensor>()->mutable_data<float>(make_ddim({30, 30}),
platform::CPUPlace());
// inputs: h_grad
LOG(INFO) << "create variable h_grad";
Variable* dh = scope_.NewVar("h_grad");
dh->GetMutable<Tensor>()->mutable_data<float>(make_ddim({10, 20, 30}),
platform::CPUPlace());
// inputs: step_scopes
LOG(INFO) << "create variable step_scopes";
scope_.NewVar("step_scopes");
// inputs: step_net
LOG(INFO) << "create variable step_net";
scope_.NewVar("step_net");
// outputs: w_grad
LOG(INFO) << "create global variable w_grad";
scope_.NewVar("rnn/w_grad");
// outputs: x_grad
LOG(INFO) << "create global variable x_grad";
scope_.NewVar("x_grad");
// outputs: h_boot_grad
LOG(INFO) << "create global variable h_boot_grad";
scope_.NewVar("h_boot_grad");
}
void CreateStepScopes() {
auto step_scopes =
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
for (int i = 0; i < 10; ++i) {
auto& scope = scope_.NewScope();
auto pre_t = scope.NewVar("rnn/pre_h")->GetMutable<Tensor>();
pre_t->mutable_data<float>({20, 30}, platform::CPUPlace());
auto tensor = scope.NewVar("rnn/h")->GetMutable<Tensor>();
tensor->mutable_data<float>({20, 30}, platform::CPUPlace());
// for unit test of ConcatOutputs
auto xg = scope.NewVar("rnn/x_grad")->GetMutable<Tensor>();
xg->mutable_data<float>({20, 30}, platform::CPUPlace());
step_scopes->emplace_back(&scope);
}
// last time step
auto g = (*step_scopes)[9]->NewVar("rnn/h_pre_grad")->GetMutable<Tensor>();
g->mutable_data<float>({20, 30}, platform::CPUPlace());
}
void CreateRNNGradientAlgorithm() {
std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
arg->step_net = "step_net";
arg->step_scopes = "step_scopes";
rnn::Link inlink;
inlink.external = "h_grad";
inlink.internal = "rnn/h_grad";
arg->inlinks = std::vector<rnn::Link>{inlink};
rnn::Link outlink;
outlink.external = "x_grad";
outlink.internal = "rnn/x_grad";
arg->outlinks = std::vector<rnn::Link>{outlink};
rnn::MemoryAttr mem_attr;
mem_attr.pre_var = "rnn/h_pre_grad";
mem_attr.var = "rnn/h_grad";
mem_attr.boot_var = "h_boot_grad";
arg->memories = std::vector<rnn::MemoryAttr>{mem_attr};
rnn_grad_algo_.Init(std::move(arg));
}
void CreateStepNet() {
LOG(INFO) << "create variable step_net";
Variable* var = scope_.NewVar("step_net");
auto net = var->GetMutable<NetOp>();
// TODO(qingqing) modify backward op create for RNNOp unit test
// and the unit test will be removed to Python.
// net->AddOp(OpRegistry::CreateOp("mul", {"X", {"rnn/h_pre", "rnn/w",
// "rnn/s_grad"}}, {"Y", {"rnn/h_pre_grad", "rnn/w_grad"}}, {}));
// net->AddOp(OpRegistry::CreateOp("add_two", {"X", {"rnn/h_grad"}},
// {"Y", {"rnn/x_grad"}}, {"Out", "rnn/s_grad"}}, {}));
net->CompleteAddOp();
}
void SegmentInputs() {
LOG(INFO) << "segment inputs";
std::vector<std::string> inlinks = {"x"};
std::vector<std::string> inlinks_alias = {"rnn/x"};
rnn::Link inlink;
inlink.external = "x";
inlink.internal = "rnn/x";
auto step_scopes =
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
rnn::SegmentInputs(*step_scopes, std::vector<rnn::Link>{inlink}, 10,
true /*infer_shape_mode*/);
}
void LinkeMemories() {
LOG(INFO) << "link memories";
rnn::MemoryAttr mem_attr;
mem_attr.pre_var = "rnn/h_pre";
mem_attr.var = "rnn/h";
mem_attr.boot_var = "boot_h";
std::vector<rnn::MemoryAttr> memories;
memories.push_back(mem_attr);
auto step_scopes =
scope_.FindVar("step_scopes")->GetMutable<std::vector<Scope*>>();
for (int i = 1; i < 10; ++i) {
rnn::LinkMemories(*step_scopes, memories, i, -1,
true /*infer_shape_mode*/);
}
}
Scope scope_;
RecurrentGradientAlgorithm rnn_grad_algo_;
};
// TEST_F(RecurrentGradientAlgorithmTest, Run) {
// platform::CPUDeviceContext ctx;
// rnn_grad_algo_.Run(scope_, ctx);
// }
} // namespace operators
} // namespace paddle
TEST(RecurrentOp, LinkMemories) {
using namespace paddle::framework;
using namespace paddle::platform;
using namespace paddle::operators;
// create and init step scopes
size_t len = 10;
std::vector<Scope*> step_scopes;
for (size_t i = 0; i < len; ++i) {
auto scope = new Scope();
scope->NewVar("pre_h");
auto tensor = scope->NewVar("h")->GetMutable<Tensor>();
float* data = tensor->mutable_data<float>({15, 20}, CPUPlace());
for (size_t j = 0; j < 15 * 20; ++j) {
data[j] = rand() * (1. / (double)RAND_MAX);
}
step_scopes.push_back(scope);
}
// create MemoryAttr
rnn::MemoryAttr mem_attr;
mem_attr.pre_var = "pre_h";
mem_attr.var = "h";
mem_attr.boot_var = "boot_h";
std::vector<rnn::MemoryAttr> memories;
memories.push_back(mem_attr);
for (size_t i = 1; i < len; ++i) {
rnn::LinkMemories(step_scopes, memories, i, -1, false
/*infer_shape_mode*/);
}
// check
for (size_t i = 0; i < len - 1; ++i) {
const float* a =
step_scopes[i]->FindVar("h")->GetMutable<Tensor>()->data<float>();
const float* b = step_scopes[i + 1]
->FindVar("pre_h")
->GetMutable<Tensor>()
->data<float>();
for (size_t j = 0; j < 15 * 20; ++j) {
ASSERT_FLOAT_EQ(a[j], b[j]);
}
}
for (int i = len - 2; i >= 0; --i) {
rnn::LinkMemories(step_scopes, memories, i, 1, false
/*infer_shape_mode*/);
}
// check
for (int i = len - 2; i >= 0; --i) {
const float* a =
step_scopes[i]->FindVar("pre_h")->GetMutable<Tensor>()->data<float>();
const float* b =
step_scopes[i + 1]->FindVar("h")->GetMutable<Tensor>()->data<float>();
for (size_t j = 0; j < 15 * 20; ++j) {
ASSERT_FLOAT_EQ(a[j], b[j]);
}
}
for (auto s : step_scopes) {
delete s;
}
}
USE_OP(add_two);
USE_OP(mul);
USE_OP_ITSELF(recurrent_op);
...@@ -106,7 +106,6 @@ void LinkMemories(const std::vector<Scope*>& scopes, ...@@ -106,7 +106,6 @@ void LinkMemories(const std::vector<Scope*>& scopes,
void InitArgument(const ArgumentName& name, Argument* arg, void InitArgument(const ArgumentName& name, Argument* arg,
const framework::OperatorBase& op) { const framework::OperatorBase& op) {
arg->step_net = op.Input(name.step_net);
arg->step_scopes = op.Output(name.step_scopes); arg->step_scopes = op.Output(name.step_scopes);
auto inlinks = op.Inputs(name.inlinks); auto inlinks = op.Inputs(name.inlinks);
......
...@@ -54,6 +54,7 @@ for i in xrange(X.shape[0]): ...@@ -54,6 +54,7 @@ for i in xrange(X.shape[0]):
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(rowwise_add, ops::RowWiseAddOp, ops::RowWiseAddOpMaker); REGISTER_OP_WITHOUT_GRADIENT(rowwise_add, ops::RowWiseAddOp,
ops::RowWiseAddOpMaker);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
rowwise_add, ops::RowWiseAddKernel<paddle::platform::CPUPlace, float>); rowwise_add, ops::RowWiseAddKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstring>
#include "paddle/framework/ddim.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
// Implementation of CPU copy
template <typename T>
void CPUScatterUpdate(const paddle::framework::Tensor* src, const int* index,
const size_t index_size,
paddle::framework::Tensor* output) {
paddle::framework::DDim output_dims = output->dims();
for (size_t i = 0; i < index_size; ++i) {
int index_ = index[i];
paddle::framework::Tensor src_ = *src;
paddle::framework::Tensor output_ = *output;
if (index_size > 1) src_ = src->Slice<T>(i, i + 1);
if (output_dims[0] > 1) output_ = output->Slice<T>(index_, index_ + 1);
auto X = EigenVector<T>::Flatten(src_);
auto Y = EigenVector<T>::Flatten(output_);
Y = X + Y;
}
}
// Implementation of GPU scatter:
template <typename T>
void GPUScatterUpdate(const T* src, const int* index, const int slice_size,
const int index_size, T* output);
/**
* Return a updated tensor from source tensor, scattered according to index:
* dst[i] += src[index[i]]
* input[src]: type-T source Tensor
* input[index]: type-int index Tensor (1-D)
* return: output tensor
*/
template <typename T>
void ScatterUpdate(const platform::Place& place,
const paddle::framework::Tensor* src,
const paddle::framework::Tensor* index,
paddle::framework::Tensor* output) {
// check index of shape 1-D
PADDLE_ENFORCE(index->dims().size() == 1);
int index_size = index->dims()[0];
auto src_dims = src->dims();
auto dst_dims = output->dims();
// check src shape and dst shape should match
for (int i = 1; i < src_dims.size(); i++)
PADDLE_ENFORCE(src_dims[i] == dst_dims[i]);
// slice size
size_t slice_size = 1;
for (int i = 0; i < src_dims.size(); ++i) slice_size *= src_dims[i];
if (platform::is_cpu_place(place)) {
CPUScatterUpdate<T>(src, index->data<int>(), index_size, output);
} else {
}
}
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/scatter.h"
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
#include <gtest/gtest.h>
#include <iostream>
#include <string>
TEST(scatter, ScatterUpdate) {
using namespace paddle::framework;
using namespace paddle::platform;
using namespace paddle::operators;
Tensor* src = new Tensor();
Tensor* index = new Tensor();
Tensor* output = new Tensor();
float* p_src = nullptr;
int* p_index = nullptr;
p_src = src->mutable_data<float>(make_ddim({1, 4}), CPUPlace());
p_index = index->mutable_data<int>(make_ddim({1}), CPUPlace());
for (size_t i = 0; i < 4; ++i) p_src[i] = float(i);
p_index[0] = 1;
float* p_output = output->mutable_data<float>(make_ddim({4, 4}), CPUPlace());
ScatterUpdate<float>(CPUPlace(), src, index, output);
for (size_t i = 0; i < 4; ++i) EXPECT_EQ(p_output[i], float(0));
for (size_t i = 0; i < 4; ++i) EXPECT_EQ(output->data<float>()[i], float(0));
for (size_t i = 4; i < 8; ++i) EXPECT_EQ(p_output[i], float(i - 4));
for (size_t i = 4; i < 8; ++i)
EXPECT_EQ(output->data<float>()[i], float(i - 4));
for (size_t i = 8; i < 16; ++i) EXPECT_EQ(p_output[i], float(0));
for (size_t i = 8; i < 16; ++i) EXPECT_EQ(output->data<float>()[i], float(0));
}
...@@ -51,6 +51,6 @@ param_out = param - learning_rate * grad; ...@@ -51,6 +51,6 @@ param_out = param - learning_rate * grad;
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(sgd, ops::SGDOp, ops::SGDOpMaker); REGISTER_OP_WITHOUT_GRADIENT(sgd, ops::SGDOp, ops::SGDOpMaker);
REGISTER_OP_CPU_KERNEL(sgd, REGISTER_OP_CPU_KERNEL(sgd,
ops::SGDOpKernel<paddle::platform::CPUPlace, float>); ops::SGDOpKernel<paddle::platform::CPUPlace, float>);
...@@ -53,9 +53,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel { ...@@ -53,9 +53,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(sigmoid, ops::SigmoidOp, ops::SigmoidOpMaker); REGISTER_OP(sigmoid, ops::SigmoidOp, ops::SigmoidOpMaker, sigmoid_grad,
REGISTER_GRADIENT_OP(sigmoid, sigmoid_grad, ops::SigmoidOpGrad); ops::SigmoidOpGrad);
REGISTER_OP_CPU_KERNEL(sigmoid, REGISTER_OP_CPU_KERNEL(sigmoid,
ops::SigmoidKernel<paddle::platform::CPUPlace, float>); ops::SigmoidKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
......
...@@ -62,9 +62,9 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel { ...@@ -62,9 +62,9 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker); REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad,
ops::SoftmaxOpGrad);
REGISTER_OP_CPU_KERNEL(softmax, REGISTER_OP_CPU_KERNEL(softmax,
ops::SoftmaxKernel<paddle::platform::CPUPlace, float>); ops::SoftmaxKernel<paddle::platform::CPUPlace, float>);
REGISTER_GRADIENT_OP(softmax, softmax_grad, ops::SoftmaxOpGrad);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
softmax_grad, ops::SoftmaxGradKernel<paddle::platform::CPUPlace, float>); softmax_grad, ops::SoftmaxGradKernel<paddle::platform::CPUPlace, float>);
...@@ -81,7 +81,7 @@ Used to initialize tensor with uniform random generator. ...@@ -81,7 +81,7 @@ Used to initialize tensor with uniform random generator.
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
REGISTER_OP(uniform_random, paddle::operators::UniformRandomOp, REGISTER_OP_WITHOUT_GRADIENT(uniform_random, paddle::operators::UniformRandomOp,
paddle::operators::UniformRandomOpMaker); paddle::operators::UniformRandomOpMaker);
REGISTER_OP_CPU_KERNEL(uniform_random, REGISTER_OP_CPU_KERNEL(uniform_random,
paddle::operators::CPUUniformRandomKernel<float>); paddle::operators::CPUUniformRandomKernel<float>);
...@@ -16,5 +16,8 @@ ELSE() ...@@ -16,5 +16,8 @@ ELSE()
set(GPU_CTX_DEPS) set(GPU_CTX_DEPS)
ENDIF() ENDIF()
cc_library(device_context SRCS device_context.cc DEPS place eigen3 ${GPU_CTX_DEPS}) # memcpy deoends on device_context, here add deps individually for
# avoiding cycle dependencies
cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator
system_allocator memory_block meta_data meta_cache place eigen3 ${GPU_CTX_DEPS})
nv_test(device_context_test SRCS device_context_test.cc DEPS device_context gpu_info) nv_test(device_context_test SRCS device_context_test.cc DEPS device_context gpu_info)
...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and ...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/platform/device_context.h" #include "paddle/platform/device_context.h"
#include "paddle/memory/memory.h"
namespace paddle { namespace paddle {
namespace platform { namespace platform {
...@@ -36,6 +37,59 @@ Place CPUDeviceContext::GetPlace() const { return CPUPlace(); } ...@@ -36,6 +37,59 @@ Place CPUDeviceContext::GetPlace() const { return CPUPlace(); }
#ifndef PADDLE_ONLY_CPU #ifndef PADDLE_ONLY_CPU
class EigenCudaStreamDevice : public Eigen::StreamInterface {
public:
EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
Eigen::initializeDeviceProp();
}
~EigenCudaStreamDevice() override {}
void Reinitialize(const cudaStream_t* cuda_stream, GPUPlace place) {
stream_ = cuda_stream;
place_ = place;
device_prop_ = &Eigen::m_deviceProperties[place.device];
}
const cudaStream_t& stream() const override { return *stream_; }
const cudaDeviceProp& deviceProperties() const override {
return *device_prop_;
}
void* allocate(size_t num_bytes) const override {
return paddle::memory::Alloc(place_, num_bytes);
}
void deallocate(void* buffer) const override {
paddle::memory::Free(place_, buffer);
}
void* scratchpad() const override {
if (scratch_ == NULL) {
scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
}
return scratch_;
}
unsigned int* semaphore() const override {
if (semaphore_ == NULL) {
char* scratch =
static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
semaphore_ = reinterpret_cast<unsigned int*>(scratch);
PADDLE_ENFORCE(
cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
}
return semaphore_;
}
private:
GPUPlace place_;
const cudaStream_t* stream_; // not owned;
const cudaDeviceProp* device_prop_; // not owned;
mutable void* scratch_;
mutable unsigned int* semaphore_;
};
template <> template <>
Eigen::GpuDevice* DeviceContext::get_eigen_device<Eigen::GpuDevice>() const { Eigen::GpuDevice* DeviceContext::get_eigen_device<Eigen::GpuDevice>() const {
return reinterpret_cast<const CUDADeviceContext*>(this)->eigen_device(); return reinterpret_cast<const CUDADeviceContext*>(this)->eigen_device();
...@@ -43,19 +97,9 @@ Eigen::GpuDevice* DeviceContext::get_eigen_device<Eigen::GpuDevice>() const { ...@@ -43,19 +97,9 @@ Eigen::GpuDevice* DeviceContext::get_eigen_device<Eigen::GpuDevice>() const {
CUDADeviceContext::CUDADeviceContext(GPUPlace place) : place_(place) { CUDADeviceContext::CUDADeviceContext(GPUPlace place) : place_(place) {
SetDeviceId(place_.device); SetDeviceId(place_.device);
// TODO(qijun) Pass a created cuda stream to Eigen::CudaStreamDevice directly PADDLE_ENFORCE(cudaStreamCreate(&stream_));
// here will cause segment fault. We must implement a class derived from eigen_stream_.reset(new EigenCudaStreamDevice());
// Eigen::StreamInterface, and reinitialize it with a cuda stream and a gpu id eigen_stream_->Reinitialize(&stream_, place);
// later. Please refer to the implementation of class EigenCudaStreamDevice
// in TensorFlow.
//
// We find that CUDA 7 introduces a new option, the per-thread default stream,
// that has two effects. Please refer to https://devblogs.nvidia.com/
// parallelforall/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
//
// So, we decide to use default stream and add –default-stream per-thread nvcc
// flag. Than, two threads with two CUDADeviceContexts will run parallelly.
eigen_stream_.reset(new Eigen::CudaStreamDevice());
eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get())); eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
} }
...@@ -75,12 +119,13 @@ CUDADeviceContext::~CUDADeviceContext() { ...@@ -75,12 +119,13 @@ CUDADeviceContext::~CUDADeviceContext() {
} }
eigen_stream_.reset(); eigen_stream_.reset();
eigen_device_.reset(); eigen_device_.reset();
PADDLE_ENFORCE(cudaStreamDestroy(stream_));
} }
Place CUDADeviceContext::GetPlace() const { return place_; } Place CUDADeviceContext::GetPlace() const { return place_; }
void CUDADeviceContext::Wait() const { void CUDADeviceContext::Wait() const {
PADDLE_ENFORCE(cudaStreamSynchronize(0)); PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
} }
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const { Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
...@@ -91,6 +136,7 @@ cublasHandle_t CUDADeviceContext::cublas_handle() { ...@@ -91,6 +136,7 @@ cublasHandle_t CUDADeviceContext::cublas_handle() {
if (!cublas_handle_) { if (!cublas_handle_) {
SetDeviceId(place_.device); SetDeviceId(place_.device);
PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_)); PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
} }
return cublas_handle_; return cublas_handle_;
} }
...@@ -99,10 +145,13 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() { ...@@ -99,10 +145,13 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() {
if (!cudnn_handle_) { if (!cudnn_handle_) {
SetDeviceId(place_.device); SetDeviceId(place_.device);
PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_));
} }
return cudnn_handle_; return cudnn_handle_;
} }
cudaStream_t CUDADeviceContext::stream() { return stream_; }
curandGenerator_t CUDADeviceContext::curand_generator() { curandGenerator_t CUDADeviceContext::curand_generator() {
if (!curand_generator_) { if (!curand_generator_) {
SetDeviceId(place_.device); SetDeviceId(place_.device);
...@@ -110,6 +159,8 @@ curandGenerator_t CUDADeviceContext::curand_generator() { ...@@ -110,6 +159,8 @@ curandGenerator_t CUDADeviceContext::curand_generator() {
CURAND_RNG_PSEUDO_DEFAULT)); CURAND_RNG_PSEUDO_DEFAULT));
PADDLE_ENFORCE( PADDLE_ENFORCE(
dynload::curandSetPseudoRandomGeneratorSeed(curand_generator_, seed_)); dynload::curandSetPseudoRandomGeneratorSeed(curand_generator_, seed_));
PADDLE_ENFORCE(dynload::curandSetStream(curand_generator_, stream_));
} }
return curand_generator_; return curand_generator_;
} }
......
...@@ -52,6 +52,7 @@ class CPUDeviceContext : public DeviceContext { ...@@ -52,6 +52,7 @@ class CPUDeviceContext : public DeviceContext {
}; };
#ifndef PADDLE_ONLY_CPU #ifndef PADDLE_ONLY_CPU
class EigenCudaStreamDevice;
class CUDADeviceContext : public DeviceContext { class CUDADeviceContext : public DeviceContext {
public: public:
...@@ -76,6 +77,9 @@ class CUDADeviceContext : public DeviceContext { ...@@ -76,6 +77,9 @@ class CUDADeviceContext : public DeviceContext {
/*! \brief Return curand handle in the device context. */ /*! \brief Return curand handle in the device context. */
curandGenerator_t curand_generator(); curandGenerator_t curand_generator();
/*! \brief Return cuda stream in the device context. */
cudaStream_t stream();
// clang-format on // clang-format on
private: private:
...@@ -83,15 +87,16 @@ class CUDADeviceContext : public DeviceContext { ...@@ -83,15 +87,16 @@ class CUDADeviceContext : public DeviceContext {
private: private:
std::unique_ptr<Eigen::GpuDevice> eigen_device_; std::unique_ptr<Eigen::GpuDevice> eigen_device_;
std::unique_ptr<Eigen::CudaStreamDevice> eigen_stream_; std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
private: private:
uint64_t seed_; uint64_t seed_;
// clang-format off // clang-format off
cudnnHandle_t cudnn_handle_ = nullptr; cudaStream_t stream_{nullptr};
cublasHandle_t cublas_handle_ = nullptr; cudnnHandle_t cudnn_handle_{nullptr};
curandGenerator_t curand_generator_ = nullptr; cublasHandle_t cublas_handle_{nullptr};
curandGenerator_t curand_generator_{nullptr};
// clang-format on // clang-format on
}; };
......
...@@ -45,6 +45,7 @@ TEST(Device, CUDADeviceContext) { ...@@ -45,6 +45,7 @@ TEST(Device, CUDADeviceContext) {
ASSERT_NE(nullptr, cublas_handle); ASSERT_NE(nullptr, cublas_handle);
curandGenerator_t curand_handle = device_context->curand_generator(); curandGenerator_t curand_handle = device_context->curand_generator();
ASSERT_NE(nullptr, curand_handle); ASSERT_NE(nullptr, curand_handle);
ASSERT_NE(nullptr, device_context->stream());
delete device_context; delete device_context;
} }
} }
...@@ -86,7 +86,7 @@ struct EnforceNotMet : public std::exception { ...@@ -86,7 +86,7 @@ struct EnforceNotMet : public std::exception {
2 + sizeof(void*) * 2, call_stack[i], 2 + sizeof(void*) * 2, call_stack[i],
demangled, addr_offset); demangled, addr_offset);
} else { } else {
sout << string::Sprintf("%-3d %*0p %s\n", i, 2 + sizeof(void*) * 2, sout << string::Sprintf("%-3d %*0p\n", i, 2 + sizeof(void*) * 2,
call_stack[i]); call_stack[i]);
} }
} }
......
...@@ -82,10 +82,6 @@ EOF ...@@ -82,10 +82,6 @@ EOF
fi fi
# To build documentation, we need to run cmake again after installing
# PaddlePaddle. This awkwardness is due to
# https://github.com/PaddlePaddle/Paddle/issues/1854. It also
# describes a solution.
if [[ ${WITH_DOC:-OFF} == "ON" ]]; then if [[ ${WITH_DOC:-OFF} == "ON" ]]; then
cat <<EOF cat <<EOF
======================================== ========================================
...@@ -93,11 +89,6 @@ Building documentation ... ...@@ -93,11 +89,6 @@ Building documentation ...
In /paddle/build_doc In /paddle/build_doc
======================================== ========================================
EOF EOF
# build documentation need install Paddle before
make install -j `nproc`
pip install /usr/local/opt/paddle/share/wheels/*.whl
paddle version
mkdir -p /paddle/build_doc mkdir -p /paddle/build_doc
pushd /paddle/build_doc pushd /paddle/build_doc
cmake .. \ cmake .. \
...@@ -106,7 +97,8 @@ EOF ...@@ -106,7 +97,8 @@ EOF
-DWITH_AVX=${WITH_AVX:-ON} \ -DWITH_AVX=${WITH_AVX:-ON} \
-DWITH_SWIG_PY=ON \ -DWITH_SWIG_PY=ON \
-DWITH_STYLE_CHECK=OFF -DWITH_STYLE_CHECK=OFF
make paddle_docs paddle_docs_cn make -j `nproc` gen_proto_py
make -j `nproc` paddle_docs paddle_docs_cn
popd popd
fi fi
...@@ -128,25 +120,6 @@ EOF ...@@ -128,25 +120,6 @@ EOF
/woboq/indexgenerator/codebrowser_indexgenerator $WOBOQ_OUT /woboq/indexgenerator/codebrowser_indexgenerator $WOBOQ_OUT
fi fi
# generate deb package for current build
# FIXME(typhoonzero): should we remove paddle/scripts/deb ?
if [[ ${WITH_DEB:-ON} == "ON" ]]; then
cat <<EOF
========================================
Generating .deb package ...
========================================
EOF
set +e
cpack -D CPACK_GENERATOR='DEB' -j `nproc` ..
err_code=$?
if [ ${err_code} -ne 0 ]; then
# cat error logs if cpack failed.
cat /paddle/build/_CPack_Packages/Linux/DEB/PreinstallOutput.log
exit ${err_code}
fi
set -e
fi
cat <<EOF cat <<EOF
======================================== ========================================
Generate /paddle/build/Dockerfile ... Generate /paddle/build/Dockerfile ...
...@@ -166,14 +139,13 @@ EOF ...@@ -166,14 +139,13 @@ EOF
fi fi
cat >> /paddle/build/Dockerfile <<EOF cat >> /paddle/build/Dockerfile <<EOF
# Use different deb file when building different type of images ADD python/dist/*.whl /
ADD *.deb /
# run paddle version to install python packages first # run paddle version to install python packages first
RUN apt-get update &&\ RUN apt-get update &&\
apt-get install -y wget python-pip && pip install -U pip && \ apt-get install -y wget python-pip && pip install -U pip && \
dpkg -i /*.deb ; apt-get install -f -y && \ pip install /*.whl; apt-get install -f -y && \
apt-get clean -y && \ apt-get clean -y && \
rm -f /*.deb && \ rm -f /*.whl && \
paddle version paddle version
${DOCKERFILE_CUDNN_DSO} ${DOCKERFILE_CUDNN_DSO}
${DOCKERFILE_GPU_ENV} ${DOCKERFILE_GPU_ENV}
...@@ -182,3 +154,7 @@ ADD go/cmd/master/master /usr/bin/ ...@@ -182,3 +154,7 @@ ADD go/cmd/master/master /usr/bin/
# default command shows the paddle version and exit # default command shows the paddle version and exit
CMD ["paddle", "version"] CMD ["paddle", "version"]
EOF EOF
set +xe
printf "If you need to install PaddlePaddle in develop docker image,"
printf "please make install or pip install build/python/dist/*.whl.\n"
...@@ -18,6 +18,8 @@ function version(){ ...@@ -18,6 +18,8 @@ function version(){
echo "PaddlePaddle @PADDLE_VERSION@, compiled with" echo "PaddlePaddle @PADDLE_VERSION@, compiled with"
echo " with_avx: @WITH_AVX@" echo " with_avx: @WITH_AVX@"
echo " with_gpu: @WITH_GPU@" echo " with_gpu: @WITH_GPU@"
echo " with_mkldnn: @WITH_MKLDNN"
echo " with_mklml: @WITH_MKLML@"
echo " with_double: @WITH_DOUBLE@" echo " with_double: @WITH_DOUBLE@"
echo " with_python: @WITH_PYTHON@" echo " with_python: @WITH_PYTHON@"
echo " with_rdma: @WITH_RDMA@" echo " with_rdma: @WITH_RDMA@"
...@@ -54,8 +56,7 @@ if [ -z "${PADDLE_NO_STAT+x}" ]; then ...@@ -54,8 +56,7 @@ if [ -z "${PADDLE_NO_STAT+x}" ]; then
fi fi
fi fi
PADDLE_BIN_PATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
MYDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
if [ ! -z "${DEBUGGER}" ]; then if [ ! -z "${DEBUGGER}" ]; then
echo "Using debug command ${DEBUGGER}" echo "Using debug command ${DEBUGGER}"
...@@ -91,34 +92,16 @@ else: ...@@ -91,34 +92,16 @@ else:
sys.exit(0) sys.exit(0)
EOF EOF
if [ $? -eq 1 ]; then # Older version installed, or not installed at all
echo "First time run paddle, need to install some python dependencies."
# setuptools normalizes package version, so we need to use normalized
# package version for paddle python package
PYTHON_PADDLE_VERSION=$(python -c 'import packaging.version
import setuptools
print str(packaging.version.Version("@PADDLE_VERSION@"))
' 2>/dev/null)
BASEDIR=$(dirname "$0")
pip install ${BASEDIR}/../opt/paddle/share/wheels/*-${PYTHON_PADDLE_VERSION}-*.whl
if [ $? -ne 0 ]; then
echo "pip install wheels failed. "
echo "Please use 'sudo paddle' at the first time you use PaddlePaddle"
echo "PaddlePaddle will install some python dependencies automatically."
exit 1
fi
echo "Python dependencies are installed."
fi
case "$1" in case "$1" in
"train") "train")
${DEBUGGER} $MYDIR/../opt/paddle/bin/paddle_trainer ${@:2} ${DEBUGGER} $PADDLE_BIN_PATH/paddle_trainer ${@:2}
;; ;;
"merge_model") "merge_model")
${DEBUGGER} $MYDIR/../opt/paddle/bin/paddle_merge_model ${@:2} ${DEBUGGER} $PADDLE_BIN_PATH/paddle_merge_model ${@:2}
;; ;;
"pserver") "pserver")
${DEBUGGER} $MYDIR/../opt/paddle/bin/paddle_pserver_main ${@:2} ${DEBUGGER} $PADDLE_BIN_PATH/paddle_pserver_main ${@:2}
;; ;;
"dump_config") "dump_config")
python -m paddle.utils.dump_config ${@:2} python -m paddle.utils.dump_config ${@:2}
...@@ -127,7 +110,7 @@ case "$1" in ...@@ -127,7 +110,7 @@ case "$1" in
python -m paddle.utils.make_model_diagram ${@:2} python -m paddle.utils.make_model_diagram ${@:2}
;; ;;
"usage") "usage")
$MYDIR/../opt/paddle/bin/paddle_usage ${@:2} $PADDLE_BIN_PATH/paddle_usage ${@:2}
;; ;;
"version") "version")
version version
......
...@@ -21,6 +21,18 @@ if(WITH_GOLANG) ...@@ -21,6 +21,18 @@ if(WITH_GOLANG)
add_dependencies(copy_paddle_master paddle_master) add_dependencies(copy_paddle_master paddle_master)
endif(WITH_GOLANG) endif(WITH_GOLANG)
set(MKL_SHARED_LIBS "")
set(MKL_DEPENDS "")
if(WITH_MKLML)
list(APPEND MKL_SHARED_LIBS ${MKLML_LIB} ${MKLML_IOMP_LIB})
list(APPEND MKL_DEPENDS mklml)
endif()
if(WITH_MKLDNN)
list(APPEND MKL_SHARED_LIBS "${MKLDNN_LIB}" "${MKLDNN_LIB}.0")
list(APPEND MKL_DEPENDS mkldnn)
endif()
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in
${CMAKE_CURRENT_BINARY_DIR}/setup.py) ${CMAKE_CURRENT_BINARY_DIR}/setup.py)
...@@ -38,8 +50,11 @@ add_custom_command(OUTPUT ${PADDLE_PYTHON_BUILD_DIR}/.timestamp ...@@ -38,8 +50,11 @@ add_custom_command(OUTPUT ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PADDLE_PYTHON_BUILD_DIR}/lib* ${PADDLE_PYTHON_BUILD_DIR}/lib-python COMMAND ${CMAKE_COMMAND} -E copy_directory ${PADDLE_PYTHON_BUILD_DIR}/lib* ${PADDLE_PYTHON_BUILD_DIR}/lib-python
DEPENDS gen_proto_py copy_paddle_pybind framework_py_proto ${PY_FILES} ${external_project_dependencies} ${COPY_PADDLE_MASTER}) DEPENDS gen_proto_py copy_paddle_pybind framework_py_proto ${PY_FILES} ${external_project_dependencies} ${COPY_PADDLE_MASTER})
add_custom_target(paddle_python ALL DEPENDS set(paddle_python_deps ${PADDLE_PYTHON_BUILD_DIR}/.timestamp paddle_pserver_main paddle_trainer paddle_merge_model ${MKL_DEPENDS})
${PADDLE_PYTHON_BUILD_DIR}/.timestamp paddle_pserver_main paddle_trainer paddle_merge_model python_api_wheel) if(WITH_SWIG_PY)
list(APPEND paddle_python_deps python_api_wheel)
endif()
add_custom_target(paddle_python ALL DEPENDS ${paddle_python_deps})
set(PADDLE_PYTHON_PACKAGE_DIR ${CMAKE_CURRENT_BINARY_DIR}/dist/) set(PADDLE_PYTHON_PACKAGE_DIR ${CMAKE_CURRENT_BINARY_DIR}/dist/)
......
...@@ -23,7 +23,7 @@ class OpDescCreationMethod(object): ...@@ -23,7 +23,7 @@ class OpDescCreationMethod(object):
""" """
A Functor object to convert user input(use key word args) to OpDesc based on A Functor object to convert user input(use key word args) to OpDesc based on
OpProto. OpProto.
:param op_proto: The OpProto object. :param op_proto: The OpProto object.
:type op_proto: op_proto_pb2.OpProto :type op_proto: op_proto_pb2.OpProto
""" """
...@@ -177,4 +177,26 @@ class OperatorFactory(object): ...@@ -177,4 +177,26 @@ class OperatorFactory(object):
return self.get_op_info(type).attrs return self.get_op_info(type).attrs
class __RecurrentOp__(object):
__proto__ = None
type = 'recurrent_op'
def __init__(self):
# cache recurrent_op's proto
if self.__proto__ is None:
for op_proto in get_all_op_protos():
if op_proto.type == self.type:
self.__proto__ = op_proto
def __call__(self, *args, **kwargs):
if self.type not in args and 'type' not in kwargs:
kwargs['type'] = self.type
# create proto
create_method = OpDescCreationMethod(self.__proto__)
proto = create_method(*args, **kwargs)
# create rnnop
return core.RecurrentOp.create(proto.SerializeToString())
Operator = OperatorFactory() # Default global factory Operator = OperatorFactory() # Default global factory
RecurrentOp = __RecurrentOp__()
...@@ -2,7 +2,7 @@ import logging ...@@ -2,7 +2,7 @@ import logging
import paddle.v2.framework.core as core import paddle.v2.framework.core as core
import unittest import unittest
import numpy as np import numpy as np
from paddle.v2.framework.op import Operator from paddle.v2.framework.op import Operator, RecurrentOp
def py_sigmoid(x): def py_sigmoid(x):
...@@ -98,11 +98,11 @@ class TestRecurrentOp(unittest.TestCase): ...@@ -98,11 +98,11 @@ class TestRecurrentOp(unittest.TestCase):
def forward(self): def forward(self):
self.scope = core.Scope() self.scope = core.Scope()
self.create_global_variables() self.create_global_variables()
self.create_rnn_op()
self.create_step_net() self.create_step_net()
rnn_op = self.create_rnn_op()
ctx = core.DeviceContext.create(core.CPUPlace()) ctx = core.DeviceContext.create(core.CPUPlace())
rnn_op.infer_shape(self.scope) self.rnnop.infer_shape(self.scope)
rnn_op.run(self.scope, ctx) self.rnnop.run(self.scope, ctx)
return np.array(self.scope.find_var("h").get_tensor()) return np.array(self.scope.find_var("h").get_tensor())
def create_global_variables(self): def create_global_variables(self):
...@@ -128,8 +128,7 @@ class TestRecurrentOp(unittest.TestCase): ...@@ -128,8 +128,7 @@ class TestRecurrentOp(unittest.TestCase):
def create_rnn_op(self): def create_rnn_op(self):
# create RNNOp # create RNNOp
rnnop = Operator( self.rnnop = RecurrentOp(
"recurrent_op",
# inputs # inputs
inlinks=["x"], inlinks=["x"],
boot_memories=["h_boot"], boot_memories=["h_boot"],
...@@ -142,14 +141,9 @@ class TestRecurrentOp(unittest.TestCase): ...@@ -142,14 +141,9 @@ class TestRecurrentOp(unittest.TestCase):
outlink_alias=["h@alias"], outlink_alias=["h@alias"],
pre_memories=["h@pre"], pre_memories=["h@pre"],
memories=["h@alias"]) memories=["h@alias"])
return rnnop
def create_step_net(self): def create_step_net(self):
var = self.scope.new_var("stepnet") stepnet = core.Net.create()
stepnet = var.get_net()
# x_fc_op = Operator("fc", X="x@alias", W="W", Y="Wx")
# h_fc_op = Operator("fc", X="h@pre", W="U", Y="Uh")
x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx") x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx")
h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh") h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh")
sum_op = Operator("add_two", X="Wx", Y="Uh", Out="sum") sum_op = Operator("add_two", X="Wx", Y="Uh", Out="sum")
...@@ -158,6 +152,7 @@ class TestRecurrentOp(unittest.TestCase): ...@@ -158,6 +152,7 @@ class TestRecurrentOp(unittest.TestCase):
for op in [x_fc_op, h_fc_op, sum_op, sig_op]: for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
stepnet.add_op(op) stepnet.add_op(op)
stepnet.complete_add_op(True) stepnet.complete_add_op(True)
self.rnnop.set_stepnet(stepnet)
def test_forward(self): def test_forward(self):
print 'test recurrent op forward' print 'test recurrent op forward'
......
...@@ -57,7 +57,7 @@ def text_file(path): ...@@ -57,7 +57,7 @@ def text_file(path):
return reader return reader
def recordio_local(paths, buf_size=100): def recordio(paths, buf_size=100):
""" """
Creates a data reader from given RecordIO file paths separated by ",", Creates a data reader from given RecordIO file paths separated by ",",
glob pattern is supported. glob pattern is supported.
...@@ -67,15 +67,19 @@ def recordio_local(paths, buf_size=100): ...@@ -67,15 +67,19 @@ def recordio_local(paths, buf_size=100):
import recordio as rec import recordio as rec
import paddle.v2.reader.decorator as dec import paddle.v2.reader.decorator as dec
import cPickle as pickle
def reader(): def reader():
a = ','.join(paths) if isinstance(paths, basestring):
f = rec.reader(a) path = paths
else:
path = ",".join(paths)
f = rec.reader(path)
while True: while True:
r = f.read() r = f.read()
if r is None: if r is None:
break break
yield r yield pickle.loads(r)
f.close() f.close()
return dec.buffered(reader, buf_size) return dec.buffered(reader, buf_size)
......
...@@ -34,5 +34,27 @@ class TestTextFile(unittest.TestCase): ...@@ -34,5 +34,27 @@ class TestTextFile(unittest.TestCase):
self.assertEqual(e, str(idx * 2) + " " + str(idx * 2 + 1)) self.assertEqual(e, str(idx * 2) + " " + str(idx * 2 + 1))
class TestRecordIO(unittest.TestCase):
def do_test(self, path):
reader = paddle.v2.reader.creator.recordio(path)
idx = 0
for e in reader():
if idx == 0:
self.assertEqual(e, (1, 2, 3))
elif idx == 1:
self.assertEqual(e, (4, 5, 6))
idx += 1
self.assertEqual(idx, 2)
def test_recordIO(self):
self.do_test(
os.path.join(
os.path.dirname(__file__), "test_reader_recordio.dat"))
self.do_test([
os.path.join(
os.path.dirname(__file__), "test_reader_recordio.dat")
])
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -27,16 +27,24 @@ class SGD(object): ...@@ -27,16 +27,24 @@ class SGD(object):
SGD Trainer combines data reader, network topolopy and update_equation together SGD Trainer combines data reader, network topolopy and update_equation together
to train/test a neural network. to train/test a neural network.
:param update_equation: The optimizer object.
:type update_equation: paddle.v2.optimizer.Optimizer
:param cost: Target cost that neural network should be optimized. :param cost: Target cost that neural network should be optimized.
:type cost: paddle.v2.config_base.Layer :type cost: paddle.v2.config_base.Layer
:param parameters: The parameters dictionary. :param parameters: The parameters dictionary.
:type parameters: paddle.v2.parameters.Parameters :type parameters: paddle.v2.parameters.Parameters
:param update_equation: The optimizer object.
:type update_equation: paddle.v2.optimizer.Optimizer
:param extra_layers: Some layers in the neural network graph are not :param extra_layers: Some layers in the neural network graph are not
in the path of cost layer. in the path of cost layer.
:param pserver_spec: pserver location, eg: localhost:3000
:type extra_layers: paddle.v2.config_base.Layer :type extra_layers: paddle.v2.config_base.Layer
:param is_local: Whether trainning locally
:type is_local: bool
:param pserver_spec: comma string for pserver location,
eg:127.10.0.10:3000,127.10.0.11:3000,
and this parameter is only used for fault
tolerant mode cluster training.
:type pserver_spec: string
:param use_etcd: Whether using etcd pserver.
:param use_etcd: bool
""" """
def __init__(self, def __init__(self,
......
requests==2.9.2 requests==2.9.2
numpy>=1.12 numpy>=1.12
protobuf==3.1 protobuf==3.1
recordio recordio>=0.1.0
matplotlib matplotlib
rarfile rarfile
scipy>=0.19.0 scipy>=0.19.0
......
...@@ -23,6 +23,19 @@ with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f: ...@@ -23,6 +23,19 @@ with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f:
if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']: if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']:
setup_requires+=["opencv-python"] setup_requires+=["opencv-python"]
# the prefix is sys.prefix which should always be usr
paddle_bin_dir = 'opt/paddle/bin'
paddle_bins = ['${PADDLE_BINARY_DIR}/paddle/scripts/paddle_usage',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_merge_model',
'${PADDLE_BINARY_DIR}/paddle/pserver/paddle_pserver_main',
'${PADDLE_BINARY_DIR}/paddle/scripts/paddle']
paddle_rt_lib_dir = 'lib'
paddle_rt_libs = ['${WARPCTC_LIBRARIES}']
if '${MKL_SHARED_LIBS}'!= '':
paddle_rt_libs += '${MKL_SHARED_LIBS}'.split(';')
setup(name='paddlepaddle', setup(name='paddlepaddle',
version='${PADDLE_VERSION}', version='${PADDLE_VERSION}',
description='Parallel Distributed Deep Learning', description='Parallel Distributed Deep Learning',
...@@ -40,11 +53,7 @@ setup(name='paddlepaddle', ...@@ -40,11 +53,7 @@ setup(name='paddlepaddle',
'paddle.v2.framework.proto': '${PADDLE_BINARY_DIR}/paddle/framework', 'paddle.v2.framework.proto': '${PADDLE_BINARY_DIR}/paddle/framework',
'py_paddle': '${PADDLE_SOURCE_DIR}/paddle/py_paddle' 'py_paddle': '${PADDLE_SOURCE_DIR}/paddle/py_paddle'
}, },
scripts=['${PADDLE_BINARY_DIR}/paddle/scripts/paddle'], scripts=paddle_bins,
distclass=BinaryDistribution, distclass=BinaryDistribution,
data_files=[('/usr/local/opt/paddle/bin', data_files=[(paddle_rt_lib_dir, paddle_rt_libs)]
['${PADDLE_BINARY_DIR}/paddle/scripts/paddle_usage',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_merge_model',
'${PADDLE_BINARY_DIR}/paddle/pserver/paddle_pserver_main'])]
) )
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册