Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
18615626
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
18615626
编写于
1月 22, 2018
作者:
武
武毅
提交者:
GitHub
1月 22, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7715 from Yancey1989/split_selected_rows_to_multi_pserver
[WIP] Split SelectedRows to multiple pservers
上级
85671b8a
d0a93936
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
101 addition
and
63 deletion
+101
-63
paddle/operators/recv_op.cc
paddle/operators/recv_op.cc
+1
-1
paddle/operators/split_selected_rows_op.cc
paddle/operators/split_selected_rows_op.cc
+7
-14
paddle/operators/split_selected_rows_op.h
paddle/operators/split_selected_rows_op.h
+49
-19
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+23
-9
python/paddle/v2/fluid/tests/test_split_selected_rows_op.py
python/paddle/v2/fluid/tests/test_split_selected_rows_op.py
+21
-20
未找到文件。
paddle/operators/recv_op.cc
浏览文件 @
18615626
...
...
@@ -103,7 +103,7 @@ class RecvOp : public framework::OperatorBase {
// TODO(typhoonzero): change this to a while_op for every cluster-batch.
bool
exit_flag
=
false
;
int64
_t
barrier_size
=
param_count
*
fan_in
;
size
_t
barrier_size
=
param_count
*
fan_in
;
while
(
!
exit_flag
)
{
// Get from multiple trainers, we don't care about the order in which
// the gradients arrives, just add suffix 0~n and merge the gradient.
...
...
paddle/operators/split_selected_rows_op.cc
浏览文件 @
18615626
...
...
@@ -23,8 +23,6 @@ class SplitSelectedRowsOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input SelectedRows."
);
AddOutput
(
"Out"
,
"The outputs of input SelectedRows."
).
AsDuplicable
();
AddAttr
<
std
::
vector
<
int
>>
(
"rows_sections"
,
"Rows section for output."
)
.
SetDefault
(
std
::
vector
<
int
>
({}));
AddAttr
<
std
::
vector
<
int
>>
(
"height_sections"
,
"Height for each output SelectedRows."
)
.
SetDefault
(
std
::
vector
<
int
>
({}));
...
...
@@ -35,16 +33,16 @@ height_sections is only needed when need to split the dims of the original tenso
Example:
Input:
X.rows = {
0,
7, 5}
X.rows = {7, 5}
X.height = 12
Attr:
rows_sections = {1, 2}
height_sections = {}
height_sections = {4, 8}
Out:
out0.rows = {0}
out0.height = 12
out1.rows = {7, 5}
out2.height = 12
out0.rows = {}
out0.height = 4
out1.rows = {5, 7}
out2.height = 8
)DOC"
);
}
...
...
@@ -61,11 +59,6 @@ class SplitSelectedRowsOp : public framework::OperatorWithKernel {
std
::
vector
<
int
>
height_sections
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"height_sections"
);
std
::
vector
<
int
>
rows_sections
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"rows_sections"
);
PADDLE_ENFORCE_EQ
(
rows_sections
.
size
(),
ctx
->
Outputs
(
"Out"
).
size
(),
"The size of rows section should be the same with Outputs size."
);
int64_t
n
=
ctx
->
Outputs
(
"Out"
).
size
();
std
::
vector
<
framework
::
DDim
>
outs_dims
;
...
...
paddle/operators/split_selected_rows_op.h
浏览文件 @
18615626
...
...
@@ -16,40 +16,70 @@ limitations under the License. */
#include <vector>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/selected_rows_functor.h"
namespace
paddle
{
namespace
operators
{
static
int
FindOutIdx
(
int
row
,
const
std
::
vector
<
int
>&
height_sections
)
{
int
offset
=
0
;
for
(
size_t
i
=
0
;
i
<
height_sections
.
size
();
++
i
)
{
if
(
row
>=
offset
&&
row
<
(
offset
+
height_sections
[
i
]))
{
return
i
;
}
offset
+=
height_sections
[
i
];
}
return
-
1
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
SplitSelectedRowsOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"X"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
SelectedRows
>
(
"Out"
);
auto
rows_sections
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"rows_sections"
);
auto
height_sections
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"height_sections"
);
int64_t
n
=
outs
.
size
();
int
offset
=
0
;
auto
x_rows
=
x
->
rows
();
std
::
vector
<
std
::
vector
<
int
>>
outs_rows_idx
;
outs_rows_idx
.
resize
(
outs
.
size
());
for
(
int64_t
i
=
0
;
i
<
n
;
++
i
)
{
framework
::
Vector
<
int64_t
>
out_rows
;
for
(
int64_t
j
=
0
;
j
<
rows_sections
[
i
];
++
j
)
{
out_rows
.
push_back
(
x
->
rows
()[
offset
+
j
]);
}
auto
row_numel
=
x
->
value
().
numel
()
/
x
->
value
().
dims
()[
0
];
auto
src
=
x
->
value
().
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
x_rows
.
size
();
++
i
)
{
int
out_idx
=
FindOutIdx
(
x_rows
[
i
],
height_sections
);
outs_rows_idx
[
out_idx
].
push_back
(
i
);
}
auto
place
=
ctx
.
GetPlace
();
auto
&
out
=
outs
[
i
];
auto
x_dims
=
x
->
GetCompleteDims
();
x_dims
[
0
]
=
rows_sections
[
i
];
out
->
mutable_value
()
->
mutable_data
<
T
>
(
x_dims
,
ctx
.
GetPlace
());
framework
::
Copy
(
x
->
value
().
Slice
(
offset
,
rows_sections
[
i
]
+
offset
),
x
->
place
(),
ctx
.
device_context
(),
out
->
mutable_value
());
outs
[
i
]
->
set_rows
(
out_rows
);
if
(
height_sections
.
size
())
{
outs
[
i
]
->
set_height
(
height_sections
[
i
]);
for
(
size_t
i
=
0
;
i
<
outs_rows_idx
.
size
();
++
i
)
{
auto
rows_idx
=
outs_rows_idx
[
i
];
if
(
rows_idx
.
size
()
>
0
)
{
auto
dims
=
x
->
GetCompleteDims
();
dims
[
0
]
=
rows_idx
.
size
();
outs
[
i
]
->
mutable_value
()
->
mutable_data
<
T
>
(
dims
,
x
->
place
());
for
(
auto
idx
:
rows_idx
)
{
outs
[
i
]
->
mutable_rows
()
->
push_back
(
x_rows
[
idx
]);
}
auto
dst
=
outs
[
i
]
->
mutable_value
()
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
size_t
j
=
0
;
j
<
rows_idx
.
size
();
j
++
)
{
if
(
platform
::
is_cpu_place
(
place
))
{
memory
::
Copy
(
platform
::
CPUPlace
(),
dst
+
j
*
row_numel
,
platform
::
CPUPlace
(),
src
+
rows_idx
[
j
]
*
row_numel
,
sizeof
(
T
)
*
row_numel
);
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
memory
::
Copy
(
platform
::
CUDAPlace
(),
dst
+
j
*
row_numel
,
platform
::
CUDAPlace
(),
src
+
rows_idx
[
j
]
*
row_numel
,
sizeof
(
T
)
*
row_numel
,
stream
);
#else
PADDLE_THROW
(
"Paddle is not compiled with GPU"
);
#endif
}
}
}
offset
+=
rows_sections
[
i
];
}
}
};
...
...
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
18615626
...
...
@@ -19,6 +19,7 @@ import optimizer
from
layer_helper
import
LayerHelper
from
distributed_spliter
import
*
import
math
from
.
import
core
class
VarBlock
:
...
...
@@ -217,15 +218,28 @@ class DistributeTranspiler:
if
len
(
splited_vars
)
<=
1
:
continue
orig_var
=
program
.
global_block
().
vars
[
varname
]
sections
=
[]
for
v
in
splited_vars
:
sections
.
append
(
v
.
shape
[
0
])
program
.
global_block
().
append_op
(
type
=
"split"
,
inputs
=
{
"X"
:
orig_var
},
outputs
=
{
"Out"
:
splited_vars
},
attrs
=
{
"sections"
:
sections
}
# assume split evenly
)
if
orig_var
==
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
:
height_sections
=
[]
for
v
in
splited_vars
:
height_sections
.
append
(
v
.
shape
[
0
])
program
.
global_block
().
append_op
(
type
=
"split_selected_rows"
,
inputs
=
{
"X"
:
orig_var
},
outputs
=
{
"Out"
:
splited_vars
},
attrs
=
{
"height_sections"
:
height_sections
})
elif
orig_var
==
core
.
VarDesc
.
VarType
.
LOD_TENSOR
:
sections
=
[]
for
v
in
splited_vars
:
sections
.
append
(
v
.
shape
[
0
])
program
.
global_block
().
append_op
(
type
=
"split"
,
inputs
=
{
"X"
:
orig_var
},
outputs
=
{
"Out"
:
splited_vars
},
attrs
=
{
"sections"
:
sections
}
# assume split evenly
)
else
:
AssertionError
(
"Variable type should be in set "
"[LOD_TENSOR, SELECTED_ROWS]"
)
return
var_mapping
def
get_trainer_program
(
self
):
...
...
python/paddle/v2/fluid/tests/test_split_selected_rows_op.py
浏览文件 @
18615626
...
...
@@ -35,8 +35,8 @@ class TestSpliteSelectedRows(unittest.TestCase):
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
rows
=
[
0
,
5
,
7
,
4
]
height
=
1
0
rows
=
[
0
,
5
,
7
,
4
,
20
]
height
=
2
0
row_numel
=
2
# initialize input variable X
...
...
@@ -46,38 +46,41 @@ class TestSpliteSelectedRows(unittest.TestCase):
np_array
=
np
.
ones
((
len
(
rows
),
row_numel
)).
astype
(
"float32"
)
np_array
[
0
,
0
]
=
2.0
np_array
[
2
,
1
]
=
4.0
np_array
[
4
,
1
]
=
8.0
x_tensor
=
x
.
get_tensor
()
x_tensor
.
set
(
np_array
,
place
)
rows_sections
=
[
2
,
2
]
height_sections
=
[]
height_sections
=
[
5
,
5
,
5
,
5
,
3
]
# initialize output variables [out0, out1]
out0
=
scope
.
var
(
'out0'
).
get_selected_rows
()
out1
=
scope
.
var
(
'out1'
).
get_selected_rows
()
outs_name
=
[
"out%d"
%
i
for
i
in
xrange
(
len
(
height_sections
))]
outs
=
[
scope
.
var
(
var_name
).
get_selected_rows
()
for
var_name
in
outs_name
]
# expected output selected rows
expected_out0_rows
=
[
0
,
5
]
expected_out1_rows
=
[
7
,
4
]
expected_
height
=
height
expected_out0_rows
=
[
0
,
4
]
expected_out1_rows
=
[
5
,
7
]
expected_
out4_rows
=
[
20
]
op
=
Operator
(
"split_selected_rows"
,
X
=
"X"
,
Out
=
[
"out0"
,
"out1"
],
rows_sections
=
rows_sections
,
Out
=
outs_name
,
height_sections
=
height_sections
)
op
.
run
(
scope
,
place
)
self
.
assertEqual
(
out0
.
rows
(),
expected_out0_rows
)
self
.
assertEqual
(
out1
.
rows
(),
expected_out1_rows
)
self
.
assertEqual
(
outs
[
0
].
rows
(),
expected_out0_rows
)
self
.
assertEqual
(
outs
[
1
].
rows
(),
expected_out1_rows
)
self
.
assertEqual
(
outs
[
4
].
rows
(),
expected_out4_rows
)
self
.
assertEqual
(
out
0
.
height
(),
expected_height
)
self
.
assertEqual
(
out
1
.
height
(),
expected_height
)
self
.
assertEqual
(
out
s
[
0
].
height
(),
height_sections
[
0
]
)
self
.
assertEqual
(
out
s
[
4
].
height
(),
height_sections
[
4
]
)
self
.
assertAlmostEqual
(
2.0
,
np
.
array
(
out0
.
get_tensor
())[
0
,
0
])
self
.
assertAlmostEqual
(
4.0
,
np
.
array
(
out1
.
get_tensor
())[
0
,
1
])
self
.
assertAlmostEqual
(
2.0
,
np
.
array
(
outs
[
0
].
get_tensor
())[
0
,
0
])
self
.
assertAlmostEqual
(
4.0
,
np
.
array
(
outs
[
1
].
get_tensor
())[
1
,
1
])
self
.
assertAlmostEqual
(
8.0
,
np
.
array
(
outs
[
4
].
get_tensor
())[
0
,
1
])
def
check_grad_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
...
...
@@ -85,8 +88,7 @@ class TestSpliteSelectedRows(unittest.TestCase):
row_numel
=
2
# attr
rows_sections
=
[
2
,
2
]
height_sections
=
[]
height_sections
=
[
5
,
5
]
# initialize input variable X
out0_grad
=
scope
.
var
(
"out0@GRAD"
).
get_selected_rows
()
...
...
@@ -113,7 +115,6 @@ class TestSpliteSelectedRows(unittest.TestCase):
"sum"
,
X
=
[
"out0@GRAD"
,
"out1@GRAD"
],
Out
=
"X@GRAD"
,
rows_sections
=
rows_sections
,
height_sections
=
height_sections
)
grad_op
.
run
(
scope
,
place
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录