未验证 提交 16a0f746 编写于 作者: Y Yu Yang 提交者: GitHub

Merge pull request #11383 from jacquesqiao/update-api-reference-1

update split_lod_tensor, create_array and array_length doc
...@@ -133,7 +133,7 @@ $out = \max(x, 0)$ ...@@ -133,7 +133,7 @@ $out = \max(x, 0)$
__attribute__((unused)) constexpr char TanhDoc[] = R"DOC( __attribute__((unused)) constexpr char TanhDoc[] = R"DOC(
Tanh Activation Operator. Tanh Activation Operator.
$$out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ $$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
)DOC"; )DOC";
......
...@@ -83,11 +83,13 @@ class PolygonBoxTransformOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -83,11 +83,13 @@ class PolygonBoxTransformOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC( AddComment(R"DOC(
PolygonBoxTransform Operator. PolygonBoxTransform Operator.
PolygonBoxTransform Operator is used to transform the coordinate shift to the real coordinate.
The input is the final geometry output in detection network. The input is the final geometry output in detection network.
We use 2*n numbers to denote the coordinate shift from n corner vertices of We use 2*n numbers to denote the coordinate shift from n corner vertices of
the polygon_box to the pixel location. As each distance offset contains two numbers (xi, yi), the polygon_box to the pixel location. As each distance offset contains two numbers (xi, yi),
the geometry output contains 2*n channels. the geometry output contains 2*n channels.
PolygonBoxTransform Operator is used to transform the coordinate shift to the real coordinate.
)DOC"); )DOC");
} }
}; };
......
...@@ -36,10 +36,13 @@ class ShapeOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -36,10 +36,13 @@ class ShapeOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
void Make() override { void Make() override {
AddInput("Input", "(Tensor), The input tensor."); AddInput("Input", "(Tensor), The input tensor.");
AddOutput("Out", "(Tensor), The shape of input tensor."); AddOutput("Out",
"(Tensor), The shape of input tensor, the data type of the shape"
" is int64_t, will be on the same device with the input Tensor.");
AddComment(R"DOC( AddComment(R"DOC(
Shape Operator. Shape Operator
Get the shape of input tensor.
Get the shape of input tensor. Only support CPU input Tensor now.
)DOC"); )DOC");
} }
}; };
......
...@@ -113,14 +113,14 @@ The logistic loss is given as follows: ...@@ -113,14 +113,14 @@ The logistic loss is given as follows:
$$loss = -Labels * \log(\sigma(X)) - (1 - Labels) * \log(1 - \sigma(X))$$ $$loss = -Labels * \log(\sigma(X)) - (1 - Labels) * \log(1 - \sigma(X))$$
We know that $$\sigma(X) = (1 / (1 + \exp(-X)))$$. By substituting this we get: We know that $$\sigma(X) = \\frac{1}{1 + \exp(-X)}$$. By substituting this we get:
$$loss = X - X * Labels + \log(1 + \exp(-X))$$ $$loss = X - X * Labels + \log(1 + \exp(-X))$$
For stability and to prevent overflow of $$\exp(-X)$$ when X < 0, For stability and to prevent overflow of $$\exp(-X)$$ when X < 0,
we reformulate the loss as follows: we reformulate the loss as follows:
$$loss = \max(X, 0) - X * Labels + \log(1 + \exp(-|X|))$$ $$loss = \max(X, 0) - X * Labels + \log(1 + \exp(-\|X\|))$$
Both the input `X` and `Labels` can carry the LoD (Level of Details) information. Both the input `X` and `Labels` can carry the LoD (Level of Details) information.
However the output only shares the LoD with input `X`. However the output only shares the LoD with input `X`.
......
...@@ -55,34 +55,36 @@ __all__ = [ ...@@ -55,34 +55,36 @@ __all__ = [
def split_lod_tensor(input, mask, level=0): def split_lod_tensor(input, mask, level=0):
""" """
**split_lod_tensor**
This function takes in an input that contains the complete lod information, This function takes in an input that contains the complete lod information,
and takes in a mask which is used to mask certain parts of the input. and takes in a mask which is used to mask certain parts of the input.
The output is the true branch and the false branch with the mask applied to The output is the true branch and the false branch with the mask applied to
the input at a certain level in the tensor. the input at a certain level in the tensor. Mainly used in IfElse to split
data into two parts.
Args: Args:
input(tuple|list|None): The input tensor that contains complete input(tuple|list|None): The input tensor that contains complete
lod information needed to construct the output. lod information needed to construct the output.
mask(list): A bool column vector which masks the input. mask(list): A bool column vector which masks the input.
level(int): The specific lod level to rank. level(int): The specific lod level to split.
Returns: Returns:
Variable: The true branch of tensor as per the mask applied to input. tuple(Variable, Variable):
Variable: The false branch of tensor as per the mask applied to input. The true branch of tensor as per the mask applied to input.
The false branch of tensor as per the mask applied to input.
Examples: Examples:
.. code-block:: python .. code-block:: python
x = layers.data(name='x', shape=[1]) x = fluid.layers.data(name='x', shape=[1])
x.persistable = True x.persistable = True
y = layers.data(name='y', shape=[1]) y = fluid.layers.data(name='y', shape=[1])
y.persistable = True y.persistable = True
out_true, out_false = layers.split_lod_tensor( out_true, out_false = fluid.layers.split_lod_tensor(
input=x, mask=y, level=level) input=x, mask=y, level=level)
""" """
helper = LayerHelper('split_lod_tensor', **locals()) helper = LayerHelper('split_lod_tensor', **locals())
out_true = helper.create_tmp_variable(dtype=input.dtype) out_true = helper.create_tmp_variable(dtype=input.dtype)
...@@ -105,8 +107,9 @@ def merge_lod_tensor(in_true, in_false, x, mask, level=0): ...@@ -105,8 +107,9 @@ def merge_lod_tensor(in_true, in_false, x, mask, level=0):
This function takes in an input :math:`x`, the True branch, the False This function takes in an input :math:`x`, the True branch, the False
branch and a binary :math:`mask`. Using this information, this function branch and a binary :math:`mask`. Using this information, this function
merges the True and False branches of the tensor into a single Output merges the True and False branches of the tensor into a single tensor as
at a certain lod level indiacted by :math:`level`. output at a certain lod level indicated by :math:`level`. Used in IfElse
to merge the output if True block and False Block.
Args: Args:
in_true(tuple|list|None): The True branch to be merged. in_true(tuple|list|None): The True branch to be merged.
...@@ -114,7 +117,7 @@ def merge_lod_tensor(in_true, in_false, x, mask, level=0): ...@@ -114,7 +117,7 @@ def merge_lod_tensor(in_true, in_false, x, mask, level=0):
x(tuple|list|None): The input tensor that contains complete x(tuple|list|None): The input tensor that contains complete
lod information needed to construct the output. lod information needed to construct the output.
mask(list): A bool column vector which masks the input. mask(list): A bool column vector which masks the input.
level(int): The specific lod level to rank. level(int): The specific lod level to merge.
Returns: Returns:
Variable: The merged output tensor. Variable: The merged output tensor.
...@@ -965,14 +968,17 @@ def array_write(x, i, array=None): ...@@ -965,14 +968,17 @@ def array_write(x, i, array=None):
def create_array(dtype): def create_array(dtype):
"""This function creates an array of type :math:`LOD_TENSOR_ARRAY` using the """
LayerHelper. **Create LoDTensorArray**
This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
implement RNN with array_write, array_read and While.
Args: Args:
dtype (int|float): The data type of the elements in the array. dtype (int|float): The data type of the elements in the lod_tensor_array.
Returns: Returns:
Variable: The tensor variable storing the elements of data type. Variable: The lod_tensor_array variable storing the elements of data type.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -1083,10 +1089,9 @@ def array_read(array, i): ...@@ -1083,10 +1089,9 @@ def array_read(array, i):
Examples: Examples:
.. code-block:: python .. code-block:: python
tmp = fluid.layers.zeros(shape=[10], dtype='int32') tmp = fluid.layers.zeros(shape=[10], dtype='int32')
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
arr = fluid.layers.array_read(tmp, i=i) arr = layers.array_read(tmp, i=i)
""" """
helper = LayerHelper('array_read', **locals()) helper = LayerHelper('array_read', **locals())
if not isinstance( if not isinstance(
...@@ -1140,9 +1145,14 @@ def shrink_memory(x, i, table): ...@@ -1140,9 +1145,14 @@ def shrink_memory(x, i, table):
def array_length(array): def array_length(array):
"""This function performs the operation to find the length of the input """
**Get the Length of Input LoDTensorArray**
This function performs the operation to find the length of the input
LOD_TENSOR_ARRAY. LOD_TENSOR_ARRAY.
Related API: array_read, array_write, While.
Args: Args:
array (LOD_TENSOR_ARRAY): The input array that will be used array (LOD_TENSOR_ARRAY): The input array that will be used
to compute the length. to compute the length.
...@@ -1151,12 +1161,13 @@ def array_length(array): ...@@ -1151,12 +1161,13 @@ def array_length(array):
Variable: The length of the input LoDTensorArray. Variable: The length of the input LoDTensorArray.
Examples: Examples:
.. code-block::python .. code-block:: python
tmp = fluid.layers.zeros(shape=[10], dtype='int32') tmp = fluid.layers.zeros(shape=[10], dtype='int32')
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
arr = fluid.layers.array_write(tmp, i=i) arr = fluid.layers.array_write(tmp, i=i)
arr_len = fluid.layers.array_length(arr) arr_len = fluid.layers.array_length(arr)
""" """
helper = LayerHelper('array_length', **locals()) helper = LayerHelper('array_length', **locals())
tmp = helper.create_tmp_variable(dtype='int64') tmp = helper.create_tmp_variable(dtype='int64')
...@@ -1247,6 +1258,42 @@ class ConditionalBlock(object): ...@@ -1247,6 +1258,42 @@ class ConditionalBlock(object):
class Switch(object): class Switch(object):
"""
Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
to modify learning rate
The Semantics:
1. A `switch` control-flow checks cases one-by-one.
2. The condition of each case is a boolean value, which is a scalar Variable.
3. It runs the first matched case, or the default case if there is one.
4. Once it matches a case, it runs the corresponding branch and only that branch.
Examples:
.. code-block:: python
lr = fluid.layers.tensor.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=True,
name="learning_rate")
one_var = tensor.fill_constant(
shape=[1], dtype='float32', value=1.0)
two_var = tensor.fill_constant(
shape=[1], dtype='float32', value=2.0)
with fluid.layers.control_flow.Switch() as switch:
with switch.case(global_step == zero_var):
fluid.layers.tensor.assign(input=one_var, output=lr)
with switch.default():
fluid.layers.tensor.assign(input=two_var, output=lr)
"""
def __init__(self, name=None): def __init__(self, name=None):
self.helper = LayerHelper('switch', name=name) self.helper = LayerHelper('switch', name=name)
self.inside_scope = False self.inside_scope = False
...@@ -1276,7 +1323,8 @@ class Switch(object): ...@@ -1276,7 +1323,8 @@ class Switch(object):
return ConditionalBlockGuard(cond_block) return ConditionalBlockGuard(cond_block)
def default(self): def default(self):
"""create a default case for this switch """
create a default case for this switch
""" """
pre_cond_num = len(self.pre_not_conditions) pre_cond_num = len(self.pre_not_conditions)
if pre_cond_num == 0: if pre_cond_num == 0:
......
...@@ -620,7 +620,7 @@ def prior_box(input, ...@@ -620,7 +620,7 @@ def prior_box(input,
offset=0.5, offset=0.5,
name=None): name=None):
""" """
**Prior box operator** **Prior Box Operator**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm. Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by Each position of the input produce N prior boxes, N is determined by
...@@ -649,26 +649,30 @@ def prior_box(input, ...@@ -649,26 +649,30 @@ def prior_box(input,
name(str): Name of the prior box op. Default: None. name(str): Name of the prior box op. Default: None.
Returns: Returns:
boxes(Variable): the output prior boxes of PriorBox. tuple: A tuple with two Variable (boxes, variances)
The layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input, boxes: the output prior boxes of PriorBox.
num_priors is the total The layout is [H, W, num_priors, 4].
box count of each position of input. H is the height of input, W is the width of input,
Variances(Variable): the expanded variances of PriorBox. num_priors is the total
The layout is [H, W, num_priors, 4]. box count of each position of input.
H is the height of input, W is the width of input
num_priors is the total variances: the expanded variances of PriorBox.
box count of each position of input The layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input
num_priors is the total
box count of each position of input
Examples: Examples:
.. code-block:: python .. code-block:: python
box, var = prior_box(
input=conv1, box, var = fluid.layers.prior_box(
image=images, input=conv1,
min_sizes=[100.], image=images,
flip=True, min_sizes=[100.],
clip=True) flip=True,
clip=True)
""" """
helper = LayerHelper("prior_box", **locals()) helper = LayerHelper("prior_box", **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -738,11 +742,9 @@ def multi_box_head(inputs, ...@@ -738,11 +742,9 @@ def multi_box_head(inputs,
stride=1, stride=1,
name=None): name=None):
""" """
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector) Generate prior boxes for SSD(Single Shot MultiBox Detector)
algorithm. The details of this algorithm, please refer the algorithm. The details of this algorithm, please refer the
section 2.2 of SSD paper (SSD: Single Shot MultiBox Detector) section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
<https://arxiv.org/abs/1512.02325>`_ . <https://arxiv.org/abs/1512.02325>`_ .
Args: Args:
...@@ -783,24 +785,27 @@ def multi_box_head(inputs, ...@@ -783,24 +785,27 @@ def multi_box_head(inputs,
name(str): Name of the prior box layer. Default: None. name(str): Name of the prior box layer. Default: None.
Returns: Returns:
mbox_loc(Variable): The predicted boxes' location of the inputs. tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)
The layout is [N, H*W*Priors, 4]. where Priors
is the number of predicted boxes each position of each input. mbox_loc: The predicted boxes' location of the inputs. The layout
mbox_conf(Variable): The predicted boxes' confidence of the inputs. is [N, H*W*Priors, 4]. where Priors is the number of predicted
The layout is [N, H*W*Priors, C]. where Priors boxes each position of each input.
is the number of predicted boxes each position of each input
and C is the number of Classes. mbox_conf: The predicted boxes' confidence of the inputs. The layout
boxes(Variable): the output prior boxes of PriorBox. is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
The layout is [num_priors, 4]. num_priors is the total each position of each input and C is the number of Classes.
box count of each position of inputs.
Variances(Variable): the expanded variances of PriorBox. boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
The layout is [num_priors, 4]. num_priors is the total num_priors is the total box count of each position of inputs.
box count of each position of inputs
variances: the expanded variances of PriorBox. The layout is
[num_priors, 4]. num_priors is the total box count of each position of inputs
Examples: Examples:
.. code-block:: python .. code-block:: python
mbox_locs, mbox_confs, box, var = layers.multi_box_head(
mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
inputs=[conv1, conv2, conv3, conv4, conv5, conv5], inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
image=images, image=images,
num_classes=21, num_classes=21,
......
...@@ -199,25 +199,28 @@ def polynomial_decay(learning_rate, ...@@ -199,25 +199,28 @@ def polynomial_decay(learning_rate,
end_learning_rate=0.0001, end_learning_rate=0.0001,
power=1.0, power=1.0,
cycle=False): cycle=False):
"""Applies polynomial decay to the initial learning rate. """
Applies polynomial decay to the initial learning rate.
.. code-block:: python
if cycle:
decay_steps = decay_steps * ceil(global_step / decay_steps)
else:
global_step = min(global_step, decay_steps)
decayed_learning_rate = (learning_rate - end_learning_rate) *
(1 - global_step / decay_steps) ^ power + end_learning_rate
>>> if cycle:
>>> decay_steps = decay_steps * ceil(global_step / decay_steps)
>>> else:
>>> global_step = min(global_step, decay_steps)
>>> decayed_learning_rate = (learning_rate - end_learning_rate) *
>>> (1 - global_step / decay_steps) ^ power +
>>> end_learning_rate
Args: Args:
learning_rate: A scalar float32 value or a Variable. This learning_rate(Variable|float32): A scalar float32 value or a Variable. This
will be the initial learning rate during training will be the initial learning rate during training.
decay_steps: A Python `int32` number. decay_steps(int32): A Python `int32` number.
end_learning_rate: A Python `float` number. end_learning_rate(float): A Python `float` number.
power: A Python `float` number power(float): A Python `float` number.
cycle: Boolean. If set true, decay the learning rate every decay_steps. cycle(bool): If set true, decay the learning rate every decay_steps.
Returns: Returns:
The decayed learning rate Variable: The decayed learning rate
""" """
global_step = _decay_step_counter() global_step = _decay_step_counter()
......
...@@ -1290,6 +1290,45 @@ def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True): ...@@ -1290,6 +1290,45 @@ def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None): def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
"""
The input of the softmax layer is a 2-D tensor with shape N x K (N is the
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.
For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
For each row :math:`i` and each column :math:`j` in Input(X), we have:
.. math::
Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
Args:
input (Variable): The input variable.
bias_attr (ParamAttr): attributes for bias
param_attr (ParamAttr): attributes for parameter
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
library is installed.
Returns:
Variable: output of softmax
Examples:
.. code-block:: python
fc = fluid.layers.fc(input=x, size=10)
softmax = fluid.layers.softmax(input=fc)
"""
helper = LayerHelper('softmax', **locals()) helper = LayerHelper('softmax', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
softmax_out = helper.create_tmp_variable(dtype) softmax_out = helper.create_tmp_variable(dtype)
...@@ -1951,27 +1990,57 @@ def batch_norm(input, ...@@ -1951,27 +1990,57 @@ def batch_norm(input,
moving_variance_name=None, moving_variance_name=None,
do_model_average_for_mean_and_var=False): do_model_average_for_mean_and_var=False):
""" """
This function helps create an operator to implement **Batch Normalization Layer**
the BatchNorm layer using the configurations from the input parameters.
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
for more details.
:math:`input` is the input features over a mini-batch.
.. math::
\\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
\ mini-batch\ mean \\\\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
\\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
Args: Args:
input (Variable): the input variable. input(variable): The input variable which is a LoDTensor.
act (str): activation type act(string, Default None): Activation type, linear|relu|prelu|...
is_test (bool): whether to run batch_norm as test mode. is_test(bool, Default False): Used for training or training.
momentum (float): momentum momentum(float, Default 0.9):
epsilon (float): epsilon, default 1e-05 epsilon(float, Default 1e-05):
param_attr (ParamAttr|None): attributes for parameter param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
bias_attr (ParamAttr|None): attributes for bias bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
data_layout (str): data layout, default NCHW data_layout(string, default NCHW): NCHW|NHWC
in_place (bool): if True, do not create tmp variable in_place(bool, Default False): Make the input and output of batch norm reuse memory.
use_mkldnn (bool): ${use_mkldnn_comment} use_mkldnn(bool, Default false): ${use_mkldnn_comment}
name (str): The name of this layer. It is optional. name(string, Default None): A name for this layer(optional). If set None, the layer
moving_mean_name (str): The name of moving mean variable name, optional. will be named automatically.
moving_variance_name (str): The name of moving variance name, optional. moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
do_model_average_for_mean_and_var (bool): moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
Returns: Returns:
Variable: output of batch_norm layer. Variable: A tensor variable which is the result after applying batch normalization on the input.
Examples:
.. code-block:: python
hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
hidden2 = fluid.layers.batch_norm(input=hidden1)
""" """
helper = LayerHelper('batch_norm', **locals()) helper = LayerHelper('batch_norm', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -4599,12 +4668,13 @@ def image_resize(input, ...@@ -4599,12 +4668,13 @@ def image_resize(input,
name=None, name=None,
resample='BILINEAR'): resample='BILINEAR'):
""" """
Resize a batch of images. **Resize a Batch of Images**
The input must be a tensor of the shape (num_batches, channels, in_h, in_w), The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
and the resizing only applies on the last two dimensions(hight and width). and the resizing only applies on the last two dimensions(hight and width).
Supporting resample methods: Supporting resample methods:
'BILINEAR' : Bilinear interpolation 'BILINEAR' : Bilinear interpolation
Args: Args:
...@@ -4624,8 +4694,8 @@ def image_resize(input, ...@@ -4624,8 +4694,8 @@ def image_resize(input,
Default: 'BILINEAR' Default: 'BILINEAR'
Returns: Returns:
out (Variable): The output is a 4-D tensor of the shape Variable: The output is a 4-D tensor of the shape
(num_batches, channls, out_h, out_w). (num_batches, channls, out_h, out_w).
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -4709,8 +4779,8 @@ def image_resize_short(input, out_short_len, resample='BILINEAR'): ...@@ -4709,8 +4779,8 @@ def image_resize_short(input, out_short_len, resample='BILINEAR'):
resample (str): resample method, default: BILINEAR. resample (str): resample method, default: BILINEAR.
Returns: Returns:
out (Variable): The output is a 4-D tensor of the shape Variable: The output is a 4-D tensor of the shape
(num_batches, channls, out_h, out_w). (num_batches, channls, out_h, out_w).
""" """
in_shape = input.shape in_shape = input.shape
if len(in_shape) != 4: if len(in_shape) != 4:
...@@ -4729,6 +4799,8 @@ def image_resize_short(input, out_short_len, resample='BILINEAR'): ...@@ -4729,6 +4799,8 @@ def image_resize_short(input, out_short_len, resample='BILINEAR'):
def gather(input, index): def gather(input, index):
""" """
**Gather Layer**
Output is obtained by gathering entries of the outer-most dimension Output is obtained by gathering entries of the outer-most dimension
of X indexed by `index` and concatenate them together. of X indexed by `index` and concatenate them together.
......
...@@ -35,10 +35,29 @@ __all__ = [ ...@@ -35,10 +35,29 @@ __all__ = [
'argmax', 'argmax',
'ones', 'ones',
'zeros', 'zeros',
'reverse',
] ]
def create_tensor(dtype, name=None, persistable=False): def create_tensor(dtype, name=None, persistable=False):
"""
Create an variable, which will hold a LoDTensor with data type dtype.
Args:
dtype(string): 'float32'|'int32'|..., the data type of the
created tensor.
name(string): The name of the created tensor, if not set,
the name will be a random unique one.
persistable(bool): Set the persistable flag of the create tensor.
Returns:
Variable: The tensor variable storing the created tensor.
Examples:
.. code-block:: python
tensor = fluid.layers.create_tensor(dtype='float32')
"""
helper = LayerHelper("create_tensor", **locals()) helper = LayerHelper("create_tensor", **locals())
return helper.create_variable( return helper.create_variable(
name=helper.name, dtype=dtype, persistable=persistable) name=helper.name, dtype=dtype, persistable=persistable)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册