提交 1653822e 编写于 作者: Q qingqing01 提交者: GitHub

Update PaddleDetection README (#3708)

* Update PaddleDetection README
* Fix some link
上级 630f58c8
...@@ -31,97 +31,101 @@ changes. ...@@ -31,97 +31,101 @@ changes.
- Performance Optimized: - Performance Optimized:
With the help of the underlying PaddlePaddle framework, faster training and With the help of the underlying PaddlePaddle framework, faster training and
reduced GPU memory footprint is achieved. Notably, Yolo V3 training is reduced GPU memory footprint is achieved. Notably, YOLOv3 training is
much faster compared to other frameworks. Another example is Mask-RCNN much faster compared to other frameworks. Another example is Mask-RCNN
(ResNet50), we managed to fit up to 4 images per GPU (Tesla V100 16GB) during (ResNet50), we managed to fit up to 4 images per GPU (Tesla V100 16GB) during
multi-GPU training. multi-GPU training.
Supported Architectures: Supported Architectures:
| | ResNet | ResNet-vd <sup>[1](#vd)</sup> | ResNeXt-vd | SENet | MobileNet | DarkNet | VGG | | | ResNet | ResNet-vd <sup>[1](#vd)</sup> | ResNeXt-vd | SENet | MobileNet | DarkNet | VGG |
|--------------------|:------:|------------------------------:|:----------:|:-----:|:---------:|:-------:|:---:| | ------------------- | :----: | ----------------------------: | :--------: | :---: | :-------: | :-----: | :--: |
| Faster R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ | | Faster R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ |
| Faster R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | | Faster R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ |
| Mask R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ | | Mask R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ |
| Mask R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | | Mask R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ |
| Cascade R-CNN | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | | Cascade Faster-RCNN | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ |
| RetinaNet | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | | Cascade Mask-RCNN | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| Yolov3 | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | | RetinaNet | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| SSD | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | | YOLOv3 | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ |
| SSD | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ |
<a name="vd">[1]</a> [ResNet-vd](https://arxiv.org/pdf/1812.01187) models offer much improved accuracy with negligible performance cost. <a name="vd">[1]</a> [ResNet-vd](https://arxiv.org/pdf/1812.01187) models offer much improved accuracy with negligible performance cost.
Advanced Features: Advanced Features:
- [x] **Synchronized Batch Norm**: currently used by Yolo V3. - [x] **Synchronized Batch Norm**: currently used by YOLOv3.
- [x] **Group Norm**: pretrained models to be released. - [x] **Group Norm**
- [x] **Modulated Deformable Convolution**: pretrained models to be released. - [x] **Modulated Deformable Convolution**
- [x] **Deformable PSRoI Pooling**: pretrained models to be released. - [x] **Deformable PSRoI Pooling**
**NOTE:** Synchronized batch normalization can only be used on multiple GPU devices, can not be used on CPU devices or single GPU device. **NOTE:** Synchronized batch normalization can only be used on multiple GPU devices, can not be used on CPU devices or single GPU device.
## Get Started
## Model zoo - [Installation guide](docs/INSTALL.md)
- [Quick Start on small dataset](docs/QUICK_STARTED.md)
Pretrained models are available in the PaddlePaddle [PaddleDetection model zoo](docs/MODEL_ZOO.md). - [Guide to traing, evaluate and arguments description](docs/GETTING_STARTED.md)
- [Guide to preprocess pipeline and custom dataset](docs/DATA.md)
- [Introduction to the configuration workflow](docs/CONFIG.md)
- [Examples for detailed configuration explanation](docs/config_example/)
- [IPython Notebook demo](demo/mask_rcnn_demo.ipynb)
- [Transfer learning document](docs/TRANSFER_LEARNING.md)
## Installation ## Model Zoo
Please follow the [installation guide](docs/INSTALL.md). - Pretrained models are available in the [PaddleDetection model zoo](docs/MODEL_ZOO.md).
- [Face detection models](configs/face_detection/README.md)
- [Pretrained models for pedestrian and vehicle detection](contrib/README.md)
## Model compression
## Get Started - [ Quantification aware training example](slim/quantization)
- [ Pruning compression example](slim/prune)
For inference, simply run the following command and the visualized result will ## Depoly
be saved in `output`.
```bash - [C++ inference depolyment](inference/README.md)
export PYTHONPATH=`pwd`:$PYTHONPATH
python tools/infer.py -c configs/mask_rcnn_r50_1x.yml \
-o weights=https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar \
--infer_img=demo/000000570688.jpg
```
For detailed training and evaluation workflow, please refer to [GETTING_STARTED.md](docs/GETTING_STARTED.md). ## Benchmark
For detailed configuration and parameter description, please refer to [Complete config files](docs/config_example/) - [Inference benchmark](docs/BENCHMARK_INFER_cn.md)
We also recommend users to take a look at the [IPython Notebook demo](demo/mask_rcnn_demo.ipynb)
Further information can be found in these documentations: ## Updates
- [Introduction to the configuration workflow.](docs/CONFIG.md) #### 10/2019
- [Guide to custom dataset and preprocess pipeline.](docs/DATA.md)
- Face detection models included: BlazeFace, Faceboxes.
- Enrich COCO models, box mAP up to 51.9%.
- Add CACacascade RCNN, one of the best single model of Objects365 2019 challenge Full Track champion.
- Add pretrained models for pedestrian and vehicle detection.
- Support mixed-precision training.
- Add C++ inference depolyment.
- Add model compression examples.
## Todo List #### 2/9/2019
Please note this is a work in progress, substantial changes may come in the - Add retrained models for GroupNorm.
near future.
Some of the planned features include:
- [ ] Mixed precision training. - Add Cascade-Mask-RCNN+FPN.
- [ ] Distributed training.
- [ ] Inference in 8-bit mode.
- [ ] User defined operations.
- [ ] Larger model zoo.
#### 5/8/2019
## Updates - Add a series of models ralated modulated Deformable Convolution.
#### 7/29/2019 #### 7/29/2019
- Update Chinese docs for PaddleDetection - Update Chinese docs for PaddleDetection
- Fix bug in R-CNN models when train and test at the same time - Fix bug in R-CNN models when train and test at the same time
- Add ResNext101-vd + Mask R-CNN + FPN models - Add ResNext101-vd + Mask R-CNN + FPN models
- Add Yolo v3 on VOC models - Add YOLOv3 on VOC models
#### 7/3/2019 #### 7/3/2019
- Initial release of PaddleDetection and detection model zoo - Initial release of PaddleDetection and detection model zoo
- Models included: Faster R-CNN, Mask R-CNN, Faster R-CNN+FPN, Mask - Models included: Faster R-CNN, Mask R-CNN, Faster R-CNN+FPN, Mask
R-CNN+FPN, Cascade-Faster-RCNN+FPN, RetinaNet, Yolo v3, and SSD. R-CNN+FPN, Cascade-Faster-RCNN+FPN, RetinaNet, YOLOv3, and SSD.
## Contributing ## Contributing
......
...@@ -65,7 +65,7 @@ PaddleDetection的目的是为工业界和学术界提供丰富、易用的目 ...@@ -65,7 +65,7 @@ PaddleDetection的目的是为工业界和学术界提供丰富、易用的目
## 模型库 ## 模型库
- [模型库](docs/MODEL_ZOO_cn.md) - [模型库](docs/MODEL_ZOO_cn.md)
- [人脸检测模型](configs/face_detection/README_cn.md) - [人脸检测模型](configs/face_detection/README.md)
- [行人检测和车辆检测预训练模型](contrib/README_cn.md) - [行人检测和车辆检测预训练模型](contrib/README_cn.md)
......
English | [简体中文](CONFIG_cn.md)
# Config Pipline # Config Pipline
## Introduction ## Introduction
......
English | [简体中文](DATA_cn.md)
# Data Pipline # Data Pipline
## Introduction ## Introduction
......
English | [简体中文](GETTING_STARTED_cn.md)
# Getting Started # Getting Started
For setting up the running environment, please refer to [installation For setting up the running environment, please refer to [installation
......
English | [简体中文](INSTALL_cn.md)
# Installation # Installation
--- ---
......
English | [简体中文](MODEL_ZOO_cn.md)
# Model Zoo and Benchmark # Model Zoo and Benchmark
## Environment ## Environment
......
English | [简体中文](TRANSFER_LEARNING_cn.md)
# Transfer Learning # Transfer Learning
Transfer learning aims at learning new knowledge from existing knowledge. For example, take pretrained model from ImageNet to initialize detection models, or take pretrained model from COCO dataset to initialize train detection models in PascalVOC dataset. Transfer learning aims at learning new knowledge from existing knowledge. For example, take pretrained model from ImageNet to initialize detection models, or take pretrained model from COCO dataset to initialize train detection models in PascalVOC dataset.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册