Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1543eeb4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1543eeb4
编写于
8月 16, 2017
作者:
S
superjom
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
init
上级
9eaef753
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
52 addition
and
8 deletion
+52
-8
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+7
-0
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+0
-1
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+6
-6
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+39
-1
未找到文件。
paddle/framework/pybind.cc
浏览文件 @
1543eeb4
...
...
@@ -275,6 +275,13 @@ All parameter, weight, gradient are variables in Paddle.
const
std
::
shared_ptr
<
operators
::
NetOp
>
&
net
)
->
void
{
self
.
set_stepnet
(
net
);
});
rnn
.
def
(
"backward"
,
[](
const
operators
::
RecurrentOp
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
const
auto
&
op
=
*
static_cast
<
const
OperatorBase
*>
(
&
forwardOp
);
return
Backward
(
op
,
no_grad_vars
);
});
ExposeOperator
(
rnn
);
m
.
def
(
"unique_integer"
,
UniqueIntegerGenerator
);
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
1543eeb4
...
...
@@ -77,7 +77,6 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// Now all variables in scope must be created outside of op.
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"stepnet_ op has no outputs"
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"net_op has no outputs"
);
if
(
seq_len_
>
step_scopes
->
size
())
{
for
(
size_t
i
=
step_scopes
->
size
();
i
<
seq_len_
;
++
i
)
{
...
...
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
1543eeb4
...
...
@@ -29,13 +29,13 @@ def get_numeric_gradient(op,
local_scope
=
None
):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array
.
:param output_name: The final output variable name.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
...
...
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
1543eeb4
...
...
@@ -3,6 +3,7 @@ import paddle.v2.framework.core as core
import
unittest
import
numpy
as
np
from
paddle.v2.framework.op
import
Operator
,
RecurrentOp
from
gradient_checker
import
GradientChecker
def
py_sigmoid
(
x
):
...
...
@@ -69,7 +70,7 @@ def create_tensor(scope, name, shape, np_data):
return
tensor
class
TestRecurrentOp
(
unittest
.
TestCase
):
class
RecurrentOpTest
(
unittest
.
TestCase
):
'''
Test RNNOp
...
...
@@ -164,5 +165,42 @@ class TestRecurrentOp(unittest.TestCase):
self
.
assertEqual
(
pd_output
.
shape
,
py_output
.
shape
)
class
RecurrentGradientOpTest
(
unittest
.
TestCase
):
def
create_forward_op
(
self
):
self
.
forward_op
=
RecurrentOp
(
# inputs
inlinks
=
[
"x"
],
boot_memories
=
[
"h_boot"
],
step_net
=
"stepnet"
,
# outputs
outlinks
=
[
"h"
],
step_scopes
=
"step_scopes"
,
# attributes
inlink_alias
=
[
"x@alias"
],
outlink_alias
=
[
"h@alias"
],
pre_memories
=
[
"h@pre"
],
memories
=
[
"h@alias"
])
# create a stepnet for RNN
stepnet
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x@alias"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"add_two"
,
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@alias"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
stepnet
.
add_op
(
op
)
stepnet
.
complete_add_op
(
True
)
self
.
forward_op
.
set_stepnet
(
stepnet
)
def
create_gradient_op
(
self
):
a
=
set
()
backward_op
=
core
.
RecurrentOp
.
backward
(
self
.
forward_op
,
a
)
def
test_grad
(
self
):
self
.
create_forward_op
()
self
.
create_gradient_op
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录