Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
151cfff9
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
151cfff9
编写于
3月 17, 2018
作者:
K
Kexin Zhao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add more tests
上级
0a95a44b
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
80 addition
and
14 deletion
+80
-14
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
+80
-14
未找到文件。
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
浏览文件 @
151cfff9
...
...
@@ -188,14 +188,27 @@ def set_output_grad(scope, outputs, place, feed_dict=None):
class
TestBatchNormOpInference
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"conv2d"
self
.
is_test
=
True
self
.
dtype
=
np
.
float32
self
.
data_layout
=
"NCHW"
init_dtype
()
init_data_layout
()
init_test_case
()
def
test_python
(
self
):
data_format
=
"NHWC"
epsilon
=
0.00001
n
,
h
,
w
,
c
=
2
,
3
,
4
,
5
x_shape
=
[
n
,
h
,
w
,
c
]
shape
=
self
.
shape
if
len
(
shape
)
==
2
:
x_shape
=
shape
c
=
x_shape
[
1
]
else
:
n
,
h
,
w
,
c
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
if
self
.
data_layout
==
"NHWC"
:
x_shape
=
[
n
,
h
,
w
,
c
]
elif
self
.
data_layout
==
"NCHW"
:
x_shape
=
[
n
,
c
,
h
,
w
]
else
:
raise
ValueError
(
"Unknown data layout."
)
scale_shape
=
[
c
]
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
self
.
dtype
)
...
...
@@ -205,7 +218,64 @@ class TestBatchNormOpInference(OpTest):
mean
=
np
.
zeros
(
scale_shape
).
astype
(
self
.
dtype
)
variance
=
np
.
ones
(
scale_shape
).
astype
(
self
.
dtype
)
# run forward
saved_mean
=
np
.
zeros
(
scale_shape
).
astype
(
self
.
dtype
)
saved_variance
=
np
.
ones
(
scale_shape
).
astype
(
self
.
dtype
)
y_out
=
_reference_testing
(
x_val
,
scale_val
,
bias_val
,
mean
,
variance
,
epsilon
,
self
.
data_layout
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x_val
),
'Scale'
:
OpTest
.
np_dtype_to_fluid_dtype
(
scale_val
),
'Bias'
:
OpTest
.
np_dtype_to_fluid_dtype
(
bias_val
),
'Mean'
:
OpTest
.
np_dtype_to_fluid_dtype
(
mean
),
'Variance'
:
OpTest
.
np_dtype_to_fluid_dtype
(
variance
)
}
self
.
attrs
=
{
'is_test'
:
self
.
is_test
,
'epsilon'
:
epsilon
,
'data_layout'
:
self
.
data_layout
}
self
.
outputs
=
{
'Y'
:
y_out
,
'MeanOut'
:
mean
,
'VarianceOut'
:
variance
,
'SavedMean'
:
saved_mean
,
'SavedVariance'
:
saved_variance
}
def
test_check_output
(
self
):
self
.
check_output
()
def
init_dtype
(
self
):
pass
def
init_data_layout
(
self
):
pass
def
init_test_case
(
self
):
self
.
shape
=
[
2
,
3
,
4
,
5
]
class
TestBatchNormOpTraining
(
OpTest
):
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
test_python_testing
(
self
):
data_format
=
"NHWC"
epsilon
=
0.00001
n
,
h
,
w
,
c
=
2
,
3
,
4
,
5
x_shape
=
[
n
,
h
,
w
,
c
]
scale_shape
=
[
c
]
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
mean
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
y_out
=
_reference_testing
(
x_val
,
scale_val
,
bias_val
,
mean
,
variance
,
epsilon
,
"NHWC"
)
...
...
@@ -218,15 +288,11 @@ class TestBatchNormOpInference(OpTest):
# transfer (N, C, H, W) back to (N, H, W, C)
y_out2_trans
=
np
.
transpose
(
y_out2
,
(
0
,
2
,
3
,
1
))
self
.
__assert_close
(
y_out
,
y_out2_trans
,
"inference output"
)
self
.
__assert_close
(
y_out
,
y_out2_trans
,
"inference outputs of two formats have differences"
)
print
'python: NHWC, NCHW, inference checking passed'
class
TestBatchNormOpTraining
(
OpTest
):
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
test_python
(
self
):
def
test_python_training
(
self
):
data_format
=
"NHWC"
epsilon
=
0.00001
momentum
=
0.9
...
...
@@ -264,7 +330,7 @@ class TestBatchNormOpTraining(OpTest):
# transfer (N, C, H, W) back to (N, H, W, C)
y_out2_trans
=
np
.
transpose
(
y_out2
,
(
0
,
2
,
3
,
1
))
self
.
__assert_close
(
y_out
,
y_out2_trans
,
"batch
variance
"
)
self
.
__assert_close
(
y_out
,
y_out2_trans
,
"batch
output
"
)
print
'python: NHWC, NCHW, forward checking passed'
# test backward now
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录