Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1463f210
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1463f210
编写于
2月 09, 2023
作者:
F
Feng Ni
提交者:
GitHub
2月 09, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine ssod codes (#7713)
上级
0a49f80c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
298 addition
and
229 deletion
+298
-229
ppdet/engine/trainer_ssod.py
ppdet/engine/trainer_ssod.py
+3
-3
ppdet/modeling/__init__.py
ppdet/modeling/__init__.py
+2
-2
ppdet/modeling/architectures/fcos.py
ppdet/modeling/architectures/fcos.py
+14
-92
ppdet/modeling/architectures/ppyoloe.py
ppdet/modeling/architectures/ppyoloe.py
+23
-120
ppdet/modeling/ssod/__init__.py
ppdet/modeling/ssod/__init__.py
+19
-0
ppdet/modeling/ssod/losses.py
ppdet/modeling/ssod/losses.py
+236
-0
ppdet/modeling/ssod/utils.py
ppdet/modeling/ssod/utils.py
+1
-12
未找到文件。
ppdet/engine/trainer_ssod.py
浏览文件 @
1463f210
...
...
@@ -31,7 +31,7 @@ from ppdet.core.workspace import create
from
ppdet.utils.checkpoint
import
load_weight
,
load_pretrain_weight
import
ppdet.utils.stats
as
stats
from
ppdet.utils
import
profiler
from
ppdet.modeling.ssod
_
utils
import
align_weak_strong_shape
from
ppdet.modeling.ssod
.
utils
import
align_weak_strong_shape
from
.trainer
import
Trainer
from
ppdet.utils.logger
import
setup_logger
...
...
@@ -317,10 +317,10 @@ class Trainer_DenseTeacher(Trainer):
train_cfg
[
'curr_iter'
]
=
curr_iter
train_cfg
[
'st_iter'
]
=
st_iter
if
self
.
_nranks
>
1
:
loss_dict_unsup
=
self
.
model
.
_layers
.
get_ssod_
distill_
loss
(
loss_dict_unsup
=
self
.
model
.
_layers
.
get_ssod_loss
(
student_preds
,
teacher_preds
,
train_cfg
)
else
:
loss_dict_unsup
=
self
.
model
.
get_ssod_
distill_
loss
(
loss_dict_unsup
=
self
.
model
.
get_ssod_loss
(
student_preds
,
teacher_preds
,
train_cfg
)
fg_num
=
loss_dict_unsup
[
"fg_sum"
]
...
...
ppdet/modeling/__init__.py
浏览文件 @
1463f210
...
...
@@ -30,7 +30,7 @@ from . import mot
from
.
import
transformers
from
.
import
assigners
from
.
import
rbox_utils
from
.
import
ssod
_utils
from
.
import
ssod
from
.ops
import
*
from
.backbones
import
*
...
...
@@ -46,4 +46,4 @@ from .mot import *
from
.transformers
import
*
from
.assigners
import
*
from
.rbox_utils
import
*
from
.ssod
_utils
import
*
from
.ssod
import
*
ppdet/modeling/architectures/fcos.py
浏览文件 @
1463f210
...
...
@@ -16,12 +16,8 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.nn.functional
as
F
from
ppdet.core.workspace
import
register
,
create
from
.meta_arch
import
BaseArch
from
..ssod_utils
import
permute_to_N_HWA_K
,
QFLv2
from
..losses
import
GIoULoss
__all__
=
[
'FCOS'
]
...
...
@@ -35,16 +31,25 @@ class FCOS(BaseArch):
backbone (object): backbone instance
neck (object): 'FPN' instance
fcos_head (object): 'FCOSHead' instance
ssod_loss (object): 'SSODFCOSLoss' instance, only used for semi-det(ssod)
"""
__category__
=
'architecture'
__inject__
=
[
'ssod_loss'
]
def
__init__
(
self
,
backbone
,
neck
=
'FPN'
,
fcos_head
=
'FCOSHead'
):
def
__init__
(
self
,
backbone
=
'ResNet'
,
neck
=
'FPN'
,
fcos_head
=
'FCOSHead'
,
ssod_loss
=
'SSODFCOSLoss'
):
super
(
FCOS
,
self
).
__init__
()
self
.
backbone
=
backbone
self
.
neck
=
neck
self
.
fcos_head
=
fcos_head
# for ssod, semi-det
self
.
is_teacher
=
False
self
.
ssod_loss
=
ssod_loss
@
classmethod
def
from_config
(
cls
,
cfg
,
*
args
,
**
kwargs
):
...
...
@@ -85,90 +90,7 @@ class FCOS(BaseArch):
def
get_loss_keys
(
self
):
return
[
'loss_cls'
,
'loss_box'
,
'loss_quality'
]
def
get_ssod_distill_loss
(
self
,
student_head_outs
,
teacher_head_outs
,
train_cfg
):
student_logits
,
student_deltas
,
student_quality
=
student_head_outs
teacher_logits
,
teacher_deltas
,
teacher_quality
=
teacher_head_outs
nc
=
student_logits
[
0
].
shape
[
1
]
student_logits
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
nc
])
for
_
in
student_logits
],
axis
=
0
)
teacher_logits
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
nc
])
for
_
in
teacher_logits
],
axis
=
0
)
student_deltas
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
4
])
for
_
in
student_deltas
],
axis
=
0
)
teacher_deltas
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
4
])
for
_
in
teacher_deltas
],
axis
=
0
)
student_quality
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
1
])
for
_
in
student_quality
],
axis
=
0
)
teacher_quality
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
1
])
for
_
in
teacher_quality
],
axis
=
0
)
ratio
=
train_cfg
.
get
(
'ratio'
,
0.01
)
with
paddle
.
no_grad
():
# Region Selection
count_num
=
int
(
teacher_logits
.
shape
[
0
]
*
ratio
)
teacher_probs
=
F
.
sigmoid
(
teacher_logits
)
max_vals
=
paddle
.
max
(
teacher_probs
,
1
)
sorted_vals
,
sorted_inds
=
paddle
.
topk
(
max_vals
,
teacher_logits
.
shape
[
0
])
mask
=
paddle
.
zeros_like
(
max_vals
)
mask
[
sorted_inds
[:
count_num
]]
=
1.
fg_num
=
sorted_vals
[:
count_num
].
sum
()
b_mask
=
mask
>
0
# distill_loss_cls
loss_logits
=
QFLv2
(
F
.
sigmoid
(
student_logits
),
teacher_probs
,
weight
=
mask
,
reduction
=
"sum"
)
/
fg_num
# distill_loss_box
inputs
=
paddle
.
concat
(
(
-
student_deltas
[
b_mask
][...,
:
2
],
student_deltas
[
b_mask
][...,
2
:]),
axis
=-
1
)
targets
=
paddle
.
concat
(
(
-
teacher_deltas
[
b_mask
][...,
:
2
],
teacher_deltas
[
b_mask
][...,
2
:]),
axis
=-
1
)
iou_loss
=
GIoULoss
(
reduction
=
'mean'
)
loss_deltas
=
iou_loss
(
inputs
,
targets
)
# distill_loss_quality
loss_quality
=
F
.
binary_cross_entropy
(
F
.
sigmoid
(
student_quality
[
b_mask
]),
F
.
sigmoid
(
teacher_quality
[
b_mask
]),
reduction
=
'mean'
)
return
{
"distill_loss_cls"
:
loss_logits
,
"distill_loss_box"
:
loss_deltas
,
"distill_loss_quality"
:
loss_quality
,
"fg_sum"
:
fg_num
,
}
def
get_ssod_loss
(
self
,
student_head_outs
,
teacher_head_outs
,
train_cfg
):
ssod_losses
=
self
.
ssod_loss
(
student_head_outs
,
teacher_head_outs
,
train_cfg
)
return
ssod_losses
ppdet/modeling/architectures/ppyoloe.py
浏览文件 @
1463f210
...
...
@@ -17,13 +17,9 @@ from __future__ import division
from
__future__
import
print_function
import
copy
import
paddle
import
paddle.nn.functional
as
F
from
ppdet.core.workspace
import
register
,
create
from
.meta_arch
import
BaseArch
from
..ssod_utils
import
QFLv2
from
..losses
import
GIoULoss
__all__
=
[
'PPYOLOE'
,
'PPYOLOEWithAuxHead'
]
# PP-YOLOE and PP-YOLOE+ are recommended to use this architecture, especially when use distillation or aux head
...
...
@@ -32,29 +28,34 @@ __all__ = ['PPYOLOE', 'PPYOLOEWithAuxHead']
@
register
class
PPYOLOE
(
BaseArch
):
"""
PPYOLOE network, see https://arxiv.org/abs/2203.16250
Args:
backbone (nn.Layer): backbone instance
neck (nn.Layer): neck instance
yolo_head (nn.Layer): anchor_head instance
post_process (object): `BBoxPostProcess` instance
ssod_loss (object): 'SSODPPYOLOELoss' instance, only used for semi-det(ssod)
for_distill (bool): whether for distillation
feat_distill_place (str): distill which feature for distillation
for_mot (bool): whether return other features for multi-object tracking
models, default False in pure object detection models.
"""
__category__
=
'architecture'
__shared__
=
[
'for_distill'
]
__inject__
=
[
'post_process'
]
__inject__
=
[
'post_process'
,
'ssod_loss'
]
def
__init__
(
self
,
backbone
=
'CSPResNet'
,
neck
=
'CustomCSPPAN'
,
yolo_head
=
'PPYOLOEHead'
,
post_process
=
'BBoxPostProcess'
,
ssod_loss
=
'SSODPPYOLOELoss'
,
for_distill
=
False
,
feat_distill_place
=
'neck_feats'
,
for_mot
=
False
):
"""
PPYOLOE network, see https://arxiv.org/abs/2203.16250
Args:
backbone (nn.Layer): backbone instance
neck (nn.Layer): neck instance
yolo_head (nn.Layer): anchor_head instance
post_process (object): `BBoxPostProcess` instance
for_mot (bool): whether return other features for multi-object tracking
models, default False in pure object detection models.
"""
super
(
PPYOLOE
,
self
).
__init__
()
self
.
backbone
=
backbone
self
.
neck
=
neck
...
...
@@ -62,8 +63,9 @@ class PPYOLOE(BaseArch):
self
.
post_process
=
post_process
self
.
for_mot
=
for_mot
# semi-det
#
for ssod,
semi-det
self
.
is_teacher
=
False
self
.
ssod_loss
=
ssod_loss
# distill
self
.
for_distill
=
for_distill
...
...
@@ -73,14 +75,11 @@ class PPYOLOE(BaseArch):
@
classmethod
def
from_config
(
cls
,
cfg
,
*
args
,
**
kwargs
):
# backbone
backbone
=
create
(
cfg
[
'backbone'
])
# fpn
kwargs
=
{
'input_shape'
:
backbone
.
out_shape
}
neck
=
create
(
cfg
[
'neck'
],
**
kwargs
)
# head
kwargs
=
{
'input_shape'
:
neck
.
out_shape
}
yolo_head
=
create
(
cfg
[
'yolo_head'
],
**
kwargs
)
...
...
@@ -134,106 +133,10 @@ class PPYOLOE(BaseArch):
def
get_loss_keys
(
self
):
return
[
'loss_cls'
,
'loss_iou'
,
'loss_dfl'
,
'loss_contrast'
]
def
get_ssod_distill_loss
(
self
,
student_head_outs
,
teacher_head_outs
,
train_cfg
):
# for semi-det distill
# student_probs: already sigmoid
student_probs
,
student_deltas
,
student_dfl
=
student_head_outs
teacher_probs
,
teacher_deltas
,
teacher_dfl
=
teacher_head_outs
bs
,
l
,
nc
=
student_probs
.
shape
[:]
student_probs
=
student_probs
.
reshape
([
-
1
,
nc
])
teacher_probs
=
teacher_probs
.
reshape
([
-
1
,
nc
])
student_deltas
=
student_deltas
.
reshape
([
-
1
,
4
])
teacher_deltas
=
teacher_deltas
.
reshape
([
-
1
,
4
])
student_dfl
=
student_dfl
.
reshape
([
-
1
,
4
,
self
.
yolo_head
.
reg_channels
])
teacher_dfl
=
teacher_dfl
.
reshape
([
-
1
,
4
,
self
.
yolo_head
.
reg_channels
])
ratio
=
train_cfg
.
get
(
'ratio'
,
0.01
)
# for contrast loss
curr_iter
=
train_cfg
[
'curr_iter'
]
st_iter
=
train_cfg
[
'st_iter'
]
if
curr_iter
==
st_iter
+
1
:
# start semi-det training
self
.
queue_ptr
=
0
self
.
queue_size
=
int
(
bs
*
l
*
ratio
)
self
.
queue_feats
=
paddle
.
zeros
([
self
.
queue_size
,
nc
])
self
.
queue_probs
=
paddle
.
zeros
([
self
.
queue_size
,
nc
])
contrast_loss_cfg
=
train_cfg
[
'contrast_loss'
]
temperature
=
contrast_loss_cfg
.
get
(
'temperature'
,
0.2
)
alpha
=
contrast_loss_cfg
.
get
(
'alpha'
,
0.9
)
smooth_iter
=
contrast_loss_cfg
.
get
(
'smooth_iter'
,
100
)
+
st_iter
with
paddle
.
no_grad
():
# Region Selection
count_num
=
int
(
teacher_probs
.
shape
[
0
]
*
ratio
)
max_vals
=
paddle
.
max
(
teacher_probs
,
1
)
sorted_vals
,
sorted_inds
=
paddle
.
topk
(
max_vals
,
teacher_probs
.
shape
[
0
])
mask
=
paddle
.
zeros_like
(
max_vals
)
mask
[
sorted_inds
[:
count_num
]]
=
1.
fg_num
=
sorted_vals
[:
count_num
].
sum
()
b_mask
=
mask
>
0.
# for contrast loss
probs
=
teacher_probs
[
b_mask
].
detach
()
if
curr_iter
>
smooth_iter
:
# memory-smoothing
A
=
paddle
.
exp
(
paddle
.
mm
(
teacher_probs
[
b_mask
],
self
.
queue_probs
.
t
())
/
temperature
)
A
=
A
/
A
.
sum
(
1
,
keepdim
=
True
)
probs
=
alpha
*
probs
+
(
1
-
alpha
)
*
paddle
.
mm
(
A
,
self
.
queue_probs
)
n
=
student_probs
[
b_mask
].
shape
[
0
]
# update memory bank
self
.
queue_feats
[
self
.
queue_ptr
:
self
.
queue_ptr
+
n
,
:]
=
teacher_probs
[
b_mask
].
detach
()
self
.
queue_probs
[
self
.
queue_ptr
:
self
.
queue_ptr
+
n
,
:]
=
teacher_probs
[
b_mask
].
detach
()
self
.
queue_ptr
=
(
self
.
queue_ptr
+
n
)
%
self
.
queue_size
# embedding similarity
sim
=
paddle
.
exp
(
paddle
.
mm
(
student_probs
[
b_mask
],
teacher_probs
[
b_mask
].
t
())
/
0.2
)
sim_probs
=
sim
/
sim
.
sum
(
1
,
keepdim
=
True
)
# pseudo-label graph with self-loop
Q
=
paddle
.
mm
(
probs
,
probs
.
t
())
Q
.
fill_diagonal_
(
1
)
pos_mask
=
(
Q
>=
0.5
).
astype
(
'float32'
)
Q
=
Q
*
pos_mask
Q
=
Q
/
Q
.
sum
(
1
,
keepdim
=
True
)
# contrastive loss
loss_contrast
=
-
(
paddle
.
log
(
sim_probs
+
1e-7
)
*
Q
).
sum
(
1
)
loss_contrast
=
loss_contrast
.
mean
()
# distill_loss_cls
loss_cls
=
QFLv2
(
student_probs
,
teacher_probs
,
weight
=
mask
,
reduction
=
"sum"
)
/
fg_num
# distill_loss_iou
inputs
=
paddle
.
concat
(
(
-
student_deltas
[
b_mask
][...,
:
2
],
student_deltas
[
b_mask
][...,
2
:]),
-
1
)
targets
=
paddle
.
concat
(
(
-
teacher_deltas
[
b_mask
][...,
:
2
],
teacher_deltas
[
b_mask
][...,
2
:]),
-
1
)
iou_loss
=
GIoULoss
(
reduction
=
'mean'
)
loss_iou
=
iou_loss
(
inputs
,
targets
)
# distill_loss_dfl
loss_dfl
=
F
.
cross_entropy
(
student_dfl
[
b_mask
].
reshape
([
-
1
,
self
.
yolo_head
.
reg_channels
]),
teacher_dfl
[
b_mask
].
reshape
([
-
1
,
self
.
yolo_head
.
reg_channels
]),
soft_label
=
True
,
reduction
=
'mean'
)
return
{
"distill_loss_cls"
:
loss_cls
,
"distill_loss_iou"
:
loss_iou
,
"distill_loss_dfl"
:
loss_dfl
,
"distill_loss_contrast"
:
loss_contrast
,
"fg_sum"
:
fg_num
,
}
def
get_ssod_loss
(
self
,
student_head_outs
,
teacher_head_outs
,
train_cfg
):
ssod_losses
=
self
.
ssod_loss
(
student_head_outs
,
teacher_head_outs
,
train_cfg
)
return
ssod_losses
@
register
...
...
ppdet/modeling/ssod/__init__.py
0 → 100644
浏览文件 @
1463f210
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
utils
from
.
import
losses
from
.utils
import
*
from
.losses
import
*
ppdet/modeling/ssod/losses.py
0 → 100644
浏览文件 @
1463f210
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
ppdet.core.workspace
import
register
from
ppdet.modeling.losses.iou_loss
import
GIoULoss
from
.utils
import
QFLv2
from
ppdet.utils.logger
import
setup_logger
logger
=
setup_logger
(
__name__
)
__all__
=
[
'SSODFCOSLoss'
,
'SSODPPYOLOELoss'
,
]
@
register
class
SSODFCOSLoss
(
nn
.
Layer
):
def
__init__
(
self
,
loss_weight
=
1.0
):
super
(
SSODFCOSLoss
,
self
).
__init__
()
self
.
loss_weight
=
loss_weight
def
forward
(
self
,
student_head_outs
,
teacher_head_outs
,
train_cfg
):
# for semi-det distill
student_logits
,
student_deltas
,
student_quality
=
student_head_outs
teacher_logits
,
teacher_deltas
,
teacher_quality
=
teacher_head_outs
nc
=
student_logits
[
0
].
shape
[
1
]
student_logits
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
nc
])
for
_
in
student_logits
],
axis
=
0
)
teacher_logits
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
nc
])
for
_
in
teacher_logits
],
axis
=
0
)
student_deltas
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
4
])
for
_
in
student_deltas
],
axis
=
0
)
teacher_deltas
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
4
])
for
_
in
teacher_deltas
],
axis
=
0
)
student_quality
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
1
])
for
_
in
student_quality
],
axis
=
0
)
teacher_quality
=
paddle
.
concat
(
[
_
.
transpose
([
0
,
2
,
3
,
1
]).
reshape
([
-
1
,
1
])
for
_
in
teacher_quality
],
axis
=
0
)
ratio
=
train_cfg
.
get
(
'ratio'
,
0.01
)
with
paddle
.
no_grad
():
# Region Selection
count_num
=
int
(
teacher_logits
.
shape
[
0
]
*
ratio
)
teacher_probs
=
F
.
sigmoid
(
teacher_logits
)
max_vals
=
paddle
.
max
(
teacher_probs
,
1
)
sorted_vals
,
sorted_inds
=
paddle
.
topk
(
max_vals
,
teacher_logits
.
shape
[
0
])
mask
=
paddle
.
zeros_like
(
max_vals
)
mask
[
sorted_inds
[:
count_num
]]
=
1.
fg_num
=
sorted_vals
[:
count_num
].
sum
()
b_mask
=
mask
>
0
# distill_loss_cls
loss_logits
=
QFLv2
(
F
.
sigmoid
(
student_logits
),
teacher_probs
,
weight
=
mask
,
reduction
=
"sum"
)
/
fg_num
# distill_loss_box
inputs
=
paddle
.
concat
(
(
-
student_deltas
[
b_mask
][...,
:
2
],
student_deltas
[
b_mask
][...,
2
:]),
axis
=-
1
)
targets
=
paddle
.
concat
(
(
-
teacher_deltas
[
b_mask
][...,
:
2
],
teacher_deltas
[
b_mask
][...,
2
:]),
axis
=-
1
)
iou_loss
=
GIoULoss
(
reduction
=
'mean'
)
loss_deltas
=
iou_loss
(
inputs
,
targets
)
# distill_loss_quality
loss_quality
=
F
.
binary_cross_entropy
(
F
.
sigmoid
(
student_quality
[
b_mask
]),
F
.
sigmoid
(
teacher_quality
[
b_mask
]),
reduction
=
'mean'
)
return
{
"distill_loss_cls"
:
loss_logits
,
"distill_loss_box"
:
loss_deltas
,
"distill_loss_quality"
:
loss_quality
,
"fg_sum"
:
fg_num
,
}
@
register
class
SSODPPYOLOELoss
(
nn
.
Layer
):
def
__init__
(
self
,
loss_weight
=
1.0
):
super
(
SSODPPYOLOELoss
,
self
).
__init__
()
self
.
loss_weight
=
loss_weight
def
forward
(
self
,
student_head_outs
,
teacher_head_outs
,
train_cfg
):
# for semi-det distill
# student_probs: already sigmoid
student_probs
,
student_deltas
,
student_dfl
=
student_head_outs
teacher_probs
,
teacher_deltas
,
teacher_dfl
=
teacher_head_outs
bs
,
l
,
nc
=
student_probs
.
shape
[:]
# bs, l, num_classes
bs
,
l
,
_
,
reg_ch
=
student_dfl
.
shape
[:]
# bs, l, 4, reg_ch
student_probs
=
student_probs
.
reshape
([
-
1
,
nc
])
teacher_probs
=
teacher_probs
.
reshape
([
-
1
,
nc
])
student_deltas
=
student_deltas
.
reshape
([
-
1
,
4
])
teacher_deltas
=
teacher_deltas
.
reshape
([
-
1
,
4
])
student_dfl
=
student_dfl
.
reshape
([
-
1
,
4
,
reg_ch
])
teacher_dfl
=
teacher_dfl
.
reshape
([
-
1
,
4
,
reg_ch
])
ratio
=
train_cfg
.
get
(
'ratio'
,
0.01
)
# for contrast loss
curr_iter
=
train_cfg
[
'curr_iter'
]
st_iter
=
train_cfg
[
'st_iter'
]
if
curr_iter
==
st_iter
+
1
:
# start semi-det training
self
.
queue_ptr
=
0
self
.
queue_size
=
int
(
bs
*
l
*
ratio
)
self
.
queue_feats
=
paddle
.
zeros
([
self
.
queue_size
,
nc
])
self
.
queue_probs
=
paddle
.
zeros
([
self
.
queue_size
,
nc
])
contrast_loss_cfg
=
train_cfg
[
'contrast_loss'
]
temperature
=
contrast_loss_cfg
.
get
(
'temperature'
,
0.2
)
alpha
=
contrast_loss_cfg
.
get
(
'alpha'
,
0.9
)
smooth_iter
=
contrast_loss_cfg
.
get
(
'smooth_iter'
,
100
)
+
st_iter
with
paddle
.
no_grad
():
# Region Selection
count_num
=
int
(
teacher_probs
.
shape
[
0
]
*
ratio
)
max_vals
=
paddle
.
max
(
teacher_probs
,
1
)
sorted_vals
,
sorted_inds
=
paddle
.
topk
(
max_vals
,
teacher_probs
.
shape
[
0
])
mask
=
paddle
.
zeros_like
(
max_vals
)
mask
[
sorted_inds
[:
count_num
]]
=
1.
fg_num
=
sorted_vals
[:
count_num
].
sum
()
b_mask
=
mask
>
0.
# for contrast loss
probs
=
teacher_probs
[
b_mask
].
detach
()
if
curr_iter
>
smooth_iter
:
# memory-smoothing
A
=
paddle
.
exp
(
paddle
.
mm
(
teacher_probs
[
b_mask
],
self
.
queue_probs
.
t
())
/
temperature
)
A
=
A
/
A
.
sum
(
1
,
keepdim
=
True
)
probs
=
alpha
*
probs
+
(
1
-
alpha
)
*
paddle
.
mm
(
A
,
self
.
queue_probs
)
n
=
student_probs
[
b_mask
].
shape
[
0
]
# update memory bank
self
.
queue_feats
[
self
.
queue_ptr
:
self
.
queue_ptr
+
n
,
:]
=
teacher_probs
[
b_mask
].
detach
()
self
.
queue_probs
[
self
.
queue_ptr
:
self
.
queue_ptr
+
n
,
:]
=
teacher_probs
[
b_mask
].
detach
()
self
.
queue_ptr
=
(
self
.
queue_ptr
+
n
)
%
self
.
queue_size
# embedding similarity
sim
=
paddle
.
exp
(
paddle
.
mm
(
student_probs
[
b_mask
],
teacher_probs
[
b_mask
].
t
())
/
0.2
)
sim_probs
=
sim
/
sim
.
sum
(
1
,
keepdim
=
True
)
# pseudo-label graph with self-loop
Q
=
paddle
.
mm
(
probs
,
probs
.
t
())
Q
.
fill_diagonal_
(
1
)
pos_mask
=
(
Q
>=
0.5
).
astype
(
'float32'
)
Q
=
Q
*
pos_mask
Q
=
Q
/
Q
.
sum
(
1
,
keepdim
=
True
)
# contrastive loss
loss_contrast
=
-
(
paddle
.
log
(
sim_probs
+
1e-7
)
*
Q
).
sum
(
1
)
loss_contrast
=
loss_contrast
.
mean
()
# distill_loss_cls
loss_cls
=
QFLv2
(
student_probs
,
teacher_probs
,
weight
=
mask
,
reduction
=
"sum"
)
/
fg_num
# distill_loss_iou
inputs
=
paddle
.
concat
(
(
-
student_deltas
[
b_mask
][...,
:
2
],
student_deltas
[
b_mask
][...,
2
:]),
-
1
)
targets
=
paddle
.
concat
(
(
-
teacher_deltas
[
b_mask
][...,
:
2
],
teacher_deltas
[
b_mask
][...,
2
:]),
-
1
)
iou_loss
=
GIoULoss
(
reduction
=
'mean'
)
loss_iou
=
iou_loss
(
inputs
,
targets
)
# distill_loss_dfl
loss_dfl
=
F
.
cross_entropy
(
student_dfl
[
b_mask
].
reshape
([
-
1
,
reg_ch
]),
teacher_dfl
[
b_mask
].
reshape
([
-
1
,
reg_ch
]),
soft_label
=
True
,
reduction
=
'mean'
)
return
{
"distill_loss_cls"
:
loss_cls
,
"distill_loss_iou"
:
loss_iou
,
"distill_loss_dfl"
:
loss_dfl
,
"distill_loss_contrast"
:
loss_contrast
,
"fg_sum"
:
fg_num
,
}
ppdet/modeling/ssod
_
utils.py
→
ppdet/modeling/ssod
/
utils.py
浏览文件 @
1463f210
# Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
3
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -58,17 +58,6 @@ def align_weak_strong_shape(data_weak, data_strong):
return
data_weak
,
data_strong
def
permute_to_N_HWA_K
(
tensor
,
K
):
"""
Transpose/reshape a tensor from (N, (A x K), H, W) to (N, (HxWxA), K)
"""
assert
tensor
.
dim
()
==
4
,
tensor
.
shape
N
,
_
,
H
,
W
=
tensor
.
shape
tensor
=
tensor
.
reshape
([
N
,
-
1
,
K
,
H
,
W
]).
transpose
([
0
,
3
,
4
,
1
,
2
])
tensor
=
tensor
.
reshape
([
N
,
-
1
,
K
])
return
tensor
def
QFLv2
(
pred_sigmoid
,
teacher_sigmoid
,
weight
=
None
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录