提交 13ec2d33 编写于 作者: M mozga-intel 提交者: tensor-tang

Enable momentum operator for a ngraph engine (#15673)

* Enable momentum operator for a ngraph engine
test=develop

* Update tests
test=develop

* Unnecessary line of the code as intended was removed
test=develop
上级 e38dd91f
...@@ -43,6 +43,7 @@ std::map<std::string, ...@@ -43,6 +43,7 @@ std::map<std::string,
{"fill_constant", NG_OPS::BuildFillConstantNode}, {"fill_constant", NG_OPS::BuildFillConstantNode},
{"mean", NG_OPS::BuildMeanNode}, {"mean", NG_OPS::BuildMeanNode},
{"mean_grad", NG_OPS::BuildMeanGradNode}, {"mean_grad", NG_OPS::BuildMeanGradNode},
{"momentum", NG_OPS::BuildMomentumNode},
{"mul", NG_OPS::BuildMulNode}, {"mul", NG_OPS::BuildMulNode},
{"mul_grad", NG_OPS::BuildMulGradNode}, {"mul_grad", NG_OPS::BuildMulGradNode},
{"pool2d", NG_OPS::BuildPool2dNode}, {"pool2d", NG_OPS::BuildPool2dNode},
......
...@@ -30,6 +30,7 @@ limitations under the License. */ ...@@ -30,6 +30,7 @@ limitations under the License. */
#include "ops/elementwise_add_op.h" #include "ops/elementwise_add_op.h"
#include "ops/fill_constant_op.h" #include "ops/fill_constant_op.h"
#include "ops/mean_op.h" #include "ops/mean_op.h"
#include "ops/momentum_op.h"
#include "ops/mul_op.h" #include "ops/mul_op.h"
#include "ops/pool2d_op.h" #include "ops/pool2d_op.h"
#include "ops/scale_op.h" #include "ops/scale_op.h"
......
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace paddle {
namespace operators {
namespace ngraphs {
void BuildMomentumNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
auto param = paddle::platform::GetInputNode(op, "Param", ngb_node_map);
auto grad = paddle::platform::GetInputNode(op, "Grad", ngb_node_map);
auto velocity = paddle::platform::GetInputNode(op, "Velocity", ngb_node_map);
auto learning_rate =
paddle::platform::GetInputNode(op, "LearningRate", ngb_node_map);
auto mu = op_attrs.Get<float>("mu");
bool use_nesterov = op_attrs.Get<bool>("use_nesterov");
auto param_shape = param->get_shape();
auto velocity_shape = velocity->get_shape();
auto grad_shape = grad->get_shape();
auto lr_shape = learning_rate->get_shape();
auto shape_velocity = ngraph::Shape{velocity_shape};
auto mu_create =
ngraph::op::Constant::create(ngraph::element::f32, shape_velocity, {mu});
auto vel_mul = std::make_shared<ngraph::op::Multiply>(velocity, mu_create);
auto vel_out = std::make_shared<ngraph::op::Add>(vel_mul, grad);
ngraph::NodeVector result;
if (use_nesterov) {
auto mul_res = std::make_shared<ngraph::op::Multiply>(vel_out, mu_create);
auto add_res = std::make_shared<ngraph::op::Add>(grad, mul_res);
auto add_2d = paddle::platform::FlattenTo2d(add_res->get_shape(), 0);
auto vel_reshape = paddle::platform::NgReshaper(vel_out, add_2d);
auto lr_bcast = std::make_shared<ngraph::op::Broadcast>(
learning_rate, vel_reshape->get_shape(),
ngraph::AxisSet{vel_reshape->get_shape().size() - 1});
auto lr_1d = paddle::platform::FlattenTo1d(lr_bcast->get_shape(), 0);
auto lr_reshape = std::make_shared<ngraph::op::Reshape>(
lr_bcast, ngraph::AxisVector{0, 1}, lr_1d);
lr_reshape = std::make_shared<ngraph::op::Reshape>(
lr_reshape, ngraph::AxisVector{0}, param->get_shape());
auto mul_res1 = std::make_shared<ngraph::op::Multiply>(add_res, lr_reshape);
auto res = std::make_shared<ngraph::op::Subtract>(param, mul_res1);
paddle::platform::SetOutputNode(op, "ParamOut", res, ngb_node_map);
} else {
auto vel_2d = paddle::platform::FlattenTo2d(vel_out->get_shape(), 0);
auto vel_reshape = paddle::platform::NgReshaper(vel_out, vel_2d);
auto lr_bcast = std::make_shared<ngraph::op::Broadcast>(
learning_rate, vel_reshape->get_shape(),
ngraph::AxisSet{vel_reshape->get_shape().size() - 1});
auto lr_1d = paddle::platform::FlattenTo1d(lr_bcast->get_shape(), 0);
auto lr_reshape = std::make_shared<ngraph::op::Reshape>(
lr_bcast, ngraph::AxisVector{0, 1}, lr_1d);
lr_reshape = std::make_shared<ngraph::op::Reshape>(
lr_reshape, ngraph::AxisVector{0}, param->get_shape());
auto mul_result =
std::make_shared<ngraph::op::Multiply>(lr_reshape, vel_out);
auto res = std::make_shared<ngraph::op::Subtract>(param, mul_result);
paddle::platform::SetOutputNode(op, "ParamOut", res, ngb_node_map);
}
paddle::platform::SetOutputNode(op, "VelocityOut", vel_out, ngb_node_map);
}
} // namespace ngraphs
} // namespace operators
} // namespace paddle
...@@ -43,6 +43,13 @@ std::shared_ptr<ngraph::Node> Nchw2Nhwc(std::shared_ptr<ngraph::Node> in) { ...@@ -43,6 +43,13 @@ std::shared_ptr<ngraph::Node> Nchw2Nhwc(std::shared_ptr<ngraph::Node> in) {
return std::make_shared<ngraph::op::Reshape>(in, axis_vec, in_shape); return std::make_shared<ngraph::op::Reshape>(in, axis_vec, in_shape);
} }
ngraph::Shape FlattenTo1d(ngraph::Shape sh, int num) {
auto x1 = std::accumulate(std::begin(sh), std::end(sh) + num, 1,
std::multiplies<size_t>());
size_t x1_l = (size_t)x1;
return ngraph::Shape{x1_l};
}
ngraph::Shape FlattenTo2d(ngraph::Shape sh, int num) { ngraph::Shape FlattenTo2d(ngraph::Shape sh, int num) {
auto x1 = std::accumulate(std::begin(sh), std::begin(sh) + num, 1, auto x1 = std::accumulate(std::begin(sh), std::begin(sh) + num, 1,
std::multiplies<size_t>()); std::multiplies<size_t>());
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -15,261 +15,7 @@ ...@@ -15,261 +15,7 @@
from __future__ import print_function from __future__ import print_function
import unittest import unittest
import numpy as np from paddle.fluid.tests.unittests.test_cross_entropy_op import TestCrossEntropyOp, TestCrossEntropyOp2, TestCrossEntropyOp3, TestCrossEntropyOp4, TestCrossEntropyOp5, TestCrossEntropyOp6, TestCrossEntropyOp7
import paddle.fluid.core as core
from paddle.fluid.tests.unittests.op_test import OpTest, randomize_probability
class TestCrossEntropyOp(OpTest):
"""Test cross-entropy with discrete one-hot labels.
"""
def setUp(self):
self.op_type = "cross_entropy"
self.soft_label = False
self.ignore_index = -100
self.dtype = np.float64
self.batch_size = 30
self.class_num = 10
self._cpu_only = True
self.init_dtype_type()
self.init_attr_type()
self.init_bs_class_num()
self.init_x()
self.init_label()
self.get_cross_entropy()
self.inputs = {"X": self.x, "Label": self.label}
self.outputs = {"Y": self.cross_entropy}
self.attrs = {
"soft_label": self.soft_label,
"ignore_index": self.ignore_index
}
def init_x(self):
self.x = randomize_probability(
self.batch_size, self.class_num, dtype=self.dtype)
def init_label(self):
self.label = np.random.randint(
0, self.class_num, (self.batch_size, 1), dtype="int64")
def get_cross_entropy(self):
self.cross_entropy = np.asmatrix(
[[-np.log(self.x[i][self.label[i][0]])]
for i in range(self.x.shape[0])],
dtype="float64")
def init_attr_type(self):
pass
def init_dtype_type(self):
pass
def init_bs_class_num(self):
pass
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Y", numeric_grad_delta=0.001)
class TestCrossEntropyOp2(TestCrossEntropyOp):
"""Test cross-entropy with vectorized soft labels.
"""
def init_label(self):
self.label = np.random.uniform(
0.1, 1.0, [self.batch_size, self.class_num]).astype(self.dtype)
self.label /= self.label.sum(axis=1, keepdims=True)
def get_cross_entropy(self):
self.cross_entropy = (-self.label * np.log(self.x)).sum(
axis=1, keepdims=True).astype(self.dtype)
def init_attr_type(self):
self.soft_label = True
def init_dtype_type(self):
self.dtype = np.float32
def init_bs_class_num(self):
self.batch_size = 5
self.class_num = 37
def test_check_grad(self):
self.check_grad(
["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)
class TestCrossEntropyOp3(TestCrossEntropyOp):
"""Test cross-entropy with vectorized one-hot representation of labels.
"""
def init_label(self):
self.label_index = np.random.randint(0, self.class_num,
(self.batch_size))
self.label = np.zeros(self.x.shape).astype(self.dtype)
self.label[np.arange(self.batch_size), self.label_index] = 1
def get_cross_entropy(self):
self.cross_entropy = np.asmatrix(
[[-np.log(self.x[i][self.label_index[i]])]
for i in range(self.x.shape[0])]).astype(self.dtype)
def init_attr_type(self):
self.soft_label = True
def init_dtype_type(self):
self.dtype = np.float32
def init_bs_class_num(self):
self.batch_size = 5
self.class_num = 17
def test_check_grad(self):
self.check_grad(
["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)
class TestCrossEntropyOp4(TestCrossEntropyOp):
"""Test high rank tensor cross-entropy with discrete one-hot labels.
"""
def init_x(self):
self.shape = [10, 2, 4]
self.ins_num = np.prod(np.array(self.shape))
self.X_2d = randomize_probability(self.ins_num,
self.class_num).astype(self.dtype)
self.x = self.X_2d.reshape(self.shape + [self.class_num])
def init_label(self):
self.label_2d = np.random.randint(
0, self.class_num, (self.ins_num, 1), dtype="int64")
self.label = self.label_2d.reshape(self.shape + [1])
def get_cross_entropy(self):
cross_entropy_2d = np.asmatrix(
[[-np.log(self.X_2d[i][self.label_2d[i][0]])]
for i in range(self.X_2d.shape[0])]).astype(self.dtype)
self.cross_entropy = np.array(cross_entropy_2d).reshape(self.shape +
[1])
def init_attr_type(self):
self.soft_label = False
def init_dtype_type(self):
self.dtype = np.float64
def init_bs_class_num(self):
self.class_num = 10
class TestCrossEntropyOp5(TestCrossEntropyOp):
"""Test high rank tensor cross-entropy with vectorized soft labels.
"""
def init_x(self):
self.shape = [4, 3]
self.ins_num = np.prod(np.array(self.shape))
self.X_2d = randomize_probability(self.ins_num,
self.class_num).astype(self.dtype)
self.x = self.X_2d.reshape(self.shape + [self.class_num])
def init_label(self):
self.label_2d = np.random.uniform(
0.1, 1.0, [self.ins_num, self.class_num]).astype(self.dtype)
self.label_2d /= self.label_2d.sum(axis=1, keepdims=True)
self.label = self.label_2d.reshape(self.shape + [self.class_num])
def get_cross_entropy(self):
cross_entropy_2d = (-self.label_2d * np.log(self.X_2d)).sum(
axis=1, keepdims=True).astype(self.dtype)
self.cross_entropy = np.array(cross_entropy_2d).reshape(self.shape +
[1])
def init_attr_type(self):
self.soft_label = True
def init_dtype_type(self):
self.dtype = np.float32
def init_bs_class_num(self):
self.class_num = 37
def test_check_grad(self):
self.check_grad(
["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)
class TestCrossEntropyOp6(TestCrossEntropyOp):
"""Test high rank tensor cross-entropy with vectorized one-hot representation of labels.
"""
def init_x(self):
self.shape = [4, 3, 2]
self.ins_num = np.prod(np.array(self.shape))
self.X_2d = randomize_probability(self.ins_num,
self.class_num).astype(self.dtype)
self.x = self.X_2d.reshape(self.shape + [self.class_num])
def init_label(self):
self.label_index_2d = np.random.randint(
0, self.class_num, (self.ins_num), dtype="int64")
label_2d = np.zeros(self.X_2d.shape)
label_2d[np.arange(self.ins_num), self.label_index_2d] = 1
self.label = label_2d.reshape(self.shape + [self.class_num]).astype(
self.dtype)
def get_cross_entropy(self):
cross_entropy_2d = np.asmatrix(
[[-np.log(self.X_2d[i][self.label_index_2d[i]])]
for i in range(self.X_2d.shape[0])])
self.cross_entropy = np.array(cross_entropy_2d).reshape(
self.shape + [1]).astype(self.dtype)
def init_attr_type(self):
self.soft_label = True
def init_dtype_type(self):
self.dtype = np.float32
def init_bs_class_num(self):
self.class_num = 17
def test_check_grad(self):
self.check_grad(
["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)
class TestCrossEntropyOp7(TestCrossEntropyOp):
"""Test cross-entropy with ignore index.
"""
def init_label(self):
self.label = np.random.randint(
0, self.class_num, (self.batch_size, 1), dtype="int64")
def get_cross_entropy(self):
self.cross_entropy = np.asmatrix(
[[-np.log(self.x[i][self.label[i][0]])]
if self.label[i][0] != self.ignore_index else [0]
for i in range(self.x.shape[0])]).astype(self.dtype)
def init_attr_type(self):
self.soft_label = False
self.ignore_index = 3
def init_dtype_type(self):
self.dtype = np.float64
def init_bs_class_num(self):
self.batch_size = 30
self.class_num = 10
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from paddle.fluid.tests.unittests.test_momentum_op import TestMomentumOp1, TestMomentumOp2, TestLarsMomentumOp, TestSparseMomentumOp, TestSparseMomentumOp2
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册