Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
12ed53c1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
12ed53c1
编写于
1月 08, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Inherit LoD from x to x_grad and enhance the unit test.
上级
e3210364
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
69 addition
and
27 deletion
+69
-27
paddle/operators/shrink_rnn_memory_op.cc
paddle/operators/shrink_rnn_memory_op.cc
+1
-0
python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py
python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py
+68
-27
未找到文件。
paddle/operators/shrink_rnn_memory_op.cc
浏览文件 @
12ed53c1
...
...
@@ -146,6 +146,7 @@ class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase {
PADDLE_ENFORCE
(
context
->
HasOutput
(
framework
::
GradVarName
(
"X"
)));
context
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
context
->
GetInputDim
(
"X"
));
context
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
));
}
};
...
...
python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py
浏览文件 @
12ed53c1
...
...
@@ -3,45 +3,86 @@ import paddle.v2.fluid.core as core
from
paddle.v2.fluid.executor
import
Executor
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.backward
import
append_backward
from
paddle.v2.fluid.framework
import
default_main_program
import
numpy
from
paddle.v2.fluid.framework
import
default_main_program
,
switch_main_program
from
paddle.v2.fluid.framework
import
Program
import
numpy
as
np
main_program
=
default_main_program
()
class
TestShrinkRNNMemory
(
unittest
.
TestCase
):
def
test_shrink_rnn_memory
(
self
):
class
TestShrinkRNNMemoryBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
main_program
=
Program
()
switch_main_program
(
self
.
main_program
)
x
=
layers
.
data
(
'x'
,
shape
=
[
100
],
dtype
=
'float32'
)
x
.
stop_gradient
=
False
table
=
layers
.
lod_rank_table
(
x
=
x
)
rank_table_tensor
=
layers
.
data
(
'rank_table_tensor'
,
shape
=
[
1
],
dtype
=
'float32'
,
lod_level
=
1
)
table
=
layers
.
lod_rank_table
(
x
=
rank_table_tensor
)
i
=
layers
.
zeros
(
dtype
=
'int64'
,
shape
=
[
1
])
mem1
=
layers
.
shrink_memory
(
x
=
x
,
i
=
i
,
table
=
table
)
self
.
mem1
=
layers
.
shrink_memory
(
x
=
x
,
i
=
i
,
table
=
table
)
i
=
layers
.
increment
(
x
=
i
)
i
.
stop_gradient
=
True
mem2
=
layers
.
shrink_memory
(
x
=
mem1
,
i
=
i
,
table
=
table
)
self
.
mem2
=
layers
.
shrink_memory
(
x
=
self
.
mem1
,
i
=
i
,
table
=
table
)
i
=
layers
.
increment
(
x
=
i
)
i
.
stop_gradient
=
True
mem3
=
layers
.
shrink_memory
(
x
=
mem2
,
i
=
i
,
table
=
table
)
self
.
mem3
=
layers
.
shrink_memory
(
x
=
self
.
mem2
,
i
=
i
,
table
=
table
)
mem3_mean
=
layers
.
mean
(
x
=
self
.
mem3
)
append_backward
(
loss
=
mem3_mean
)
self
.
x_grad
=
self
.
main_program
.
global_block
().
var
(
'x@GRAD'
)
def
sum_lodtensor
(
self
,
tensor
):
sum_res
=
0.0
for
i
in
xrange
(
np
.
product
(
tensor
.
get_dims
())):
sum_res
+=
tensor
.
get_float_element
(
i
)
return
sum_res
class
TestShrinkRNNMemoryReferLoD
(
TestShrinkRNNMemoryBase
):
def
test_refer_lod
(
self
):
cpu
=
core
.
CPUPlace
()
tensor
=
core
.
LoDTensor
()
tensor
.
set_lod
([[
0
,
2
,
5
,
6
]])
tensor_np
=
numpy
.
random
.
random
(
size
=
(
6
,
100
)).
astype
(
'float32'
)
tensor
.
set
(
tensor_np
,
cpu
)
x_tensor
=
core
.
LoDTensor
()
x_tensor
.
set_lod
([[
0
,
2
,
5
,
6
]])
tensor_np
=
np
.
random
.
random
(
size
=
(
6
,
100
)).
astype
(
'float32'
)
x_tensor
.
set
(
tensor_np
,
cpu
)
rank_table_tensor
=
core
.
LoDTensor
()
rank_table_tensor
.
set_lod
([[
0
,
1
,
3
,
6
]])
rank_table_tensor
.
set
(
np
.
random
.
random
(
size
=
(
6
,
1
)).
astype
(
'float32'
),
cpu
)
exe
=
Executor
(
cpu
)
outs
=
exe
.
run
(
feed
=
{
'x'
:
tensor
},
fetch_list
=
[
mem1
,
mem2
,
mem3
],
return_numpy
=
False
)
self
.
assertTrue
(
numpy
.
allclose
(
tensor_np
[
0
:
6
],
outs
[
0
]))
self
.
assertTrue
(
numpy
.
allclose
(
tensor_np
[
0
:
5
],
outs
[
1
]))
self
.
assertTrue
(
numpy
.
allclose
(
tensor_np
[
0
:
2
],
outs
[
2
]))
mem3_mean
=
layers
.
mean
(
x
=
mem3
)
append_backward
(
loss
=
mem3_mean
)
x_grad
=
exe
.
run
(
feed
=
{
'x'
:
tensor
},
fetch_list
=
[
main_program
.
global_block
().
var
(
'x@GRAD'
)])[
0
]
self
.
assertAlmostEqual
(
1.0
,
x_grad
.
sum
(),
delta
=
0.1
)
outs
=
exe
.
run
(
feed
=
{
'x'
:
x_tensor
,
'rank_table_tensor'
:
rank_table_tensor
},
fetch_list
=
[
self
.
mem1
,
self
.
mem2
,
self
.
mem3
,
self
.
x_grad
],
return_numpy
=
False
)
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
6
],
outs
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
5
],
outs
[
1
]))
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
2
],
outs
[
2
]))
self
.
assertAlmostEqual
(
1.0
,
self
.
sum_lodtensor
(
outs
[
3
]),
delta
=
0.01
)
class
TestShrinkRNNMemoryNoLoD
(
TestShrinkRNNMemoryBase
):
def
test_no_lod
(
self
):
cpu
=
core
.
CPUPlace
()
x_tensor
=
core
.
LoDTensor
()
tensor_np
=
np
.
random
.
random
(
size
=
(
3
,
100
)).
astype
(
'float32'
)
x_tensor
.
set
(
tensor_np
,
cpu
)
rank_table_tensor
=
core
.
LoDTensor
()
rank_table_tensor
.
set_lod
([[
0
,
1
,
3
,
6
]])
rank_table_tensor
.
set
(
np
.
random
.
random
(
size
=
(
6
,
1
)).
astype
(
'float32'
),
cpu
)
exe
=
Executor
(
cpu
)
outs
=
exe
.
run
(
feed
=
{
'x'
:
x_tensor
,
'rank_table_tensor'
:
rank_table_tensor
},
fetch_list
=
[
self
.
mem1
,
self
.
mem2
,
self
.
mem3
,
self
.
x_grad
],
return_numpy
=
False
)
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
3
],
outs
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
2
],
outs
[
1
]))
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
1
],
outs
[
2
]))
self
.
assertAlmostEqual
(
1.0
,
self
.
sum_lodtensor
(
outs
[
3
]),
delta
=
0.01
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录