Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
12e1719f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
12e1719f
编写于
11月 28, 2018
作者:
J
Jiabin Yang
提交者:
GitHub
11月 28, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14352 from JiabinYang/enhance_hierachical_sigmod_op
Enhance hierarchical sigmoid op
上级
36e26a53
eda06906
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
765 addition
and
131 deletion
+765
-131
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/framework/selected_rows.h
paddle/fluid/framework/selected_rows.h
+18
-3
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+89
-21
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+122
-39
paddle/fluid/operators/math/matrix_bit_code.cc
paddle/fluid/operators/math/matrix_bit_code.cc
+65
-30
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+119
-12
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+81
-20
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+251
-5
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+19
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
12e1719f
...
@@ -98,7 +98,7 @@ paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=
...
@@ -98,7 +98,7 @@ paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name'
], varargs=None, keywords=None, defaults=(None, None, Non
e))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name'
, 'path_table', 'path_code', 'is_custom', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, False, Fals
e))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/framework/selected_rows.h
浏览文件 @
12e1719f
...
@@ -120,8 +120,22 @@ class SelectedRows {
...
@@ -120,8 +120,22 @@ class SelectedRows {
*/
*/
int64_t
AutoGrownIndex
(
int64_t
key
,
bool
auto_grown
,
bool
is_test
=
false
);
int64_t
AutoGrownIndex
(
int64_t
key
,
bool
auto_grown
,
bool
is_test
=
false
);
void
SyncIndex
();
/*
* @brief Get the index of the key from id_to_index_ map.
*/
inline
int64_t
GetIndexFromId
(
int64_t
key
)
{
auto
iter
=
id_to_index_
.
find
(
key
);
if
(
iter
==
id_to_index_
.
end
())
{
return
-
1
;
}
else
{
return
iter
->
second
;
}
}
void
SyncIndex
();
/*
* @brief Get complete Dims before
*/
DDim
GetCompleteDims
()
const
{
DDim
GetCompleteDims
()
const
{
std
::
vector
<
int64_t
>
dims
=
vectorize
(
value_
->
dims
());
std
::
vector
<
int64_t
>
dims
=
vectorize
(
value_
->
dims
());
dims
[
0
]
=
height_
;
dims
[
0
]
=
height_
;
...
@@ -133,9 +147,10 @@ class SelectedRows {
...
@@ -133,9 +147,10 @@ class SelectedRows {
// SelectedRows are simply concated when adding together. Until a
// SelectedRows are simply concated when adding together. Until a
// SelectedRows add a Tensor, will the duplicate rows be handled.
// SelectedRows add a Tensor, will the duplicate rows be handled.
Vector
<
int64_t
>
rows_
;
Vector
<
int64_t
>
rows_
;
std
::
unordered_map
<
int64_t
,
int64_t
>
id_to_index_
;
std
::
unordered_map
<
int64_t
,
int64_t
>
id_to_index_
;
// should not be used when rows_ has duplicate member
std
::
unique_ptr
<
Tensor
>
value_
{
nullptr
};
std
::
unique_ptr
<
Tensor
>
value_
{
nullptr
};
int64_t
height_
;
int64_t
height_
;
// height indicates the underline tensor's height
std
::
unique_ptr
<
RWLock
>
rwlock_
{
nullptr
};
std
::
unique_ptr
<
RWLock
>
rwlock_
{
nullptr
};
};
};
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
12e1719f
...
@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
...
@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
#include <string>
#include <vector>
#include <vector>
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -70,13 +70,14 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
...
@@ -70,13 +70,14 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
const
int64_t
batch_size
=
ctx
->
GetInputDim
(
"X"
)[
0
];
const
int64_t
batch_size
=
ctx
->
GetInputDim
(
"X"
)[
0
];
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
1
});
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
1
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
protected:
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoD
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
ctx
.
GetPlace
());
}
}
};
};
...
@@ -86,27 +87,40 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -86,27 +87,40 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"X"
,
AddInput
(
"X"
,
"(Tensor, required) The input tensor with shape [N, D], "
"(
LoD
Tensor, required) The input tensor with shape [N, D], "
"where N is the size of mini-batch, and D is the feature size."
);
"where N is the size of mini-batch, and D is the feature size."
);
AddInput
(
"W"
,
AddInput
(
"W"
,
"(Tensor, required), The parameters of hierarchical "
"(
LoD
Tensor, required), The parameters of hierarchical "
"sigmoid operator, each of them is a 2-D tensor, the shape is"
"sigmoid operator, each of them is a 2-D tensor, the shape is"
"[
num_classes - 1, D].
"
);
"[
K, D]. Which K is the num of non-leaf node in Path Tree
"
);
AddInput
(
"Label"
,
AddInput
(
"Label"
,
"(Tensor, required), The labels of training data. It's a"
"(
LoD
Tensor, required), The labels of training data. It's a"
"tensor with shape [N, 1]."
);
"tensor with shape [N, 1]."
);
AddInput
(
"PTable"
,
"(LoDTensor, optional), The Path Table from root to current word"
"it should have shape like [N, L], L is the length of the Path"
)
.
AsDispensable
();
AddInput
(
"PathCode"
,
"(LoDTensor, optional), The Code on each Node of the Path from root "
"to current word"
"it should have shape like [N, L], L is the length of the Path"
)
.
AsDispensable
();
AddInput
(
"Bias"
,
AddInput
(
"Bias"
,
"(Tensor, optional), The bias is a tensor with shape"
"(LoDTensor, optional), The bias is a tensor with shape or "
"[1, num_classes - 1]."
);
"[num_classes, 1]"
AddOutput
(
"Out"
,
"[num_classes - 1, 1]."
)
"(Tensor, required) The output of hierarchical sigmoid operator."
.
AsDispensable
();
"The shape is [N, 1]."
);
AddOutput
(
"Out"
,
"(LoDTensor, required) The output of hierarchical sigmoid operator."
"The shape is [N, 1]."
);
AddOutput
(
"PreOut"
,
AddOutput
(
"PreOut"
,
"(Tensor, required) A intermedia 2-D tensor with shape "
"(
LoD
Tensor, required) A intermedia 2-D tensor with shape "
"[batch_size, code_length], where code_length represents the "
"[batch_size, code_length], where code_length represents the "
"maximum path length from root to leaf nodes."
)
"maximum path length from root to leaf nodes."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddAttr
<
AttrType
>
(
"num_classes"
,
"(int,
required
), The number of classes"
)
AddAttr
<
AttrType
>
(
"num_classes"
,
"(int,
optional
), The number of classes"
)
.
SetDefault
(
2
);
.
SetDefault
(
2
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
The hierarchical sigmoid operator organize the classes into a binary tree.
...
@@ -115,6 +129,10 @@ belonging to the right branch. This idea is from
...
@@ -115,6 +129,10 @@ belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
"F. Morin, Y. Bengio (AISTATS 05):
Hierarchical Probabilistic Neural Network Language Model."
Hierarchical Probabilistic Neural Network Language Model."
)DOC"
);
)DOC"
);
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) "
"Sparse update."
)
.
SetDefault
(
false
);
}
}
};
};
...
@@ -124,16 +142,21 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
...
@@ -124,16 +142,21 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input(W) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input(W) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@Grad) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PreOut"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PreOut"
),
"Input(Preout) should not be null."
);
"Input(Preout) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"W"
)),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"W"
)),
"Output(W@Grad should not be null.)"
);
"Output(W@Grad should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)));
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
"Output(X@Grad should not be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
if
(
!
ctx
->
Attrs
().
Get
<
bool
>
(
"is_sparse"
))
{
ctx
->
GetInputDim
(
"Bias"
));
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
ctx
->
GetInputDim
(
"W"
));
}
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
ctx
->
GetInputDim
(
"W"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
}
...
@@ -141,11 +164,55 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
...
@@ -141,11 +164,55 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoD
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
ctx
.
GetPlace
());
}
}
};
};
class
HierarchicalSigmoidGradOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
w_grad_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
bias_grad_var_name_vec
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
));
std
::
string
bias_grad_var_name
;
bool
hasBias
=
false
;
if
(
bias_grad_var_name_vec
.
size
())
{
hasBias
=
true
;
bias_grad_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
}
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
}
else
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
block
->
Var
(
w_grad_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
());
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
...
@@ -153,7 +220,8 @@ namespace ops = paddle::operators;
...
@@ -153,7 +220,8 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR
(
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOp
,
REGISTER_OPERATOR
(
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOp
,
ops
::
HierarchicalSigmoidOpMaker
<
int
>
,
ops
::
HierarchicalSigmoidOpMaker
<
int
>
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
hierarchical_sigmoid_grad
,
ops
::
HierarchicalSigmoidGradOp
);
REGISTER_OPERATOR
(
hierarchical_sigmoid_grad
,
ops
::
HierarchicalSigmoidGradOp
,
ops
::
HierarchicalSigmoidGradOpGradVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
hierarchical_sigmoid
,
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
HierarchicalSigmoidOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
12e1719f
...
@@ -14,12 +14,16 @@ limitations under the License. */
...
@@ -14,12 +14,16 @@ limitations under the License. */
#pragma once
#pragma once
#include <iostream>
#include <iostream>
#include <set>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include "paddle/fluid/platform/transform.h"
#include "paddle/fluid/platform/transform.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -28,20 +32,38 @@ template <typename T, int MajorType = Eigen::RowMajor,
...
@@ -28,20 +32,38 @@ template <typename T, int MajorType = Eigen::RowMajor,
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
using
platform
::
Transform
;
using
platform
::
Transform
;
static
std
::
vector
<
int64_t
>
PathToRows
(
const
framework
::
LoDTensor
&
path
)
{
std
::
set
<
int64_t
>
rows
;
for
(
int64_t
i
=
0
;
i
<
path
.
numel
();
++
i
)
{
int64_t
row
=
path
.
data
<
int64_t
>
()[
i
];
if
(
row
<
0
)
{
continue
;
}
rows
.
emplace
(
row
);
}
return
std
::
vector
<
int64_t
>
(
rows
.
begin
(),
rows
.
end
());
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
HierarchicalSigmoidOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
HierarchicalSigmoidOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
&
in
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
*
w
=
ctx
.
Input
<
framework
::
Tensor
>
(
"W"
);
auto
&
w
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
));
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PTable"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Bias"
);
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PathCode"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
&
label
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
));
auto
*
pre_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"PreOut"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
pre_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"PreOut"
);
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
bool
is_custom
=
false
;
int64_t
batch_size
=
in
->
dims
()[
0
];
if
(
path
)
{
framework
::
Tensor
sum
;
is_custom
=
true
;
}
int64_t
code_length
=
path
?
path
->
dims
()[
1
]
:
math
::
FindLastSet
(
num_classes
-
1
);
int64_t
batch_size
=
in
.
dims
()[
0
];
framework
::
LoDTensor
sum
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
*
pre_out_data
=
pre_out
->
mutable_data
<
T
>
(
auto
*
pre_out_data
=
pre_out
->
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
code_length
}),
ctx
.
GetPlace
());
framework
::
make_ddim
({
batch_size
,
code_length
}),
ctx
.
GetPlace
());
...
@@ -52,7 +74,15 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
...
@@ -52,7 +74,15 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
zero
(
dev_ctx
,
pre_out
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
pre_out
,
static_cast
<
T
>
(
0.0
));
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
math
::
RowwiseSum
<
DeviceContext
,
T
>
row_sum
;
math
::
RowwiseSum
<
DeviceContext
,
T
>
row_sum
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
(
num_classes
,
label
->
data
<
int64_t
>
());
std
::
unique_ptr
<
math
::
MatrixBitCodeFunctor
<
T
>>
bit_code
;
if
(
!
is_custom
)
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
num_classes
,
label
.
data
<
int64_t
>
()));
}
else
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
*
path
,
*
code
,
label
.
data
<
int64_t
>
()));
}
std
::
vector
<
int64_t
>
sum_dims
({
batch_size
,
1UL
});
std
::
vector
<
int64_t
>
sum_dims
({
batch_size
,
1UL
});
sum
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
sum_dims
),
ctx
.
GetPlace
());
sum
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
sum_dims
),
ctx
.
GetPlace
());
...
@@ -60,15 +90,15 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
...
@@ -60,15 +90,15 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
auto
out_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
if
(
bias
)
{
if
(
bias
)
{
bit_code
.
Add
(
pre_out
,
*
bias
);
bit_code
->
Add
(
*
bias
,
pre_out
);
}
}
bit_code
.
Mul
(
pre_out
,
*
w
,
*
in
);
bit_code
->
Mul
(
pre_out
,
w
,
in
);
// clip to [-40, 40]
// clip to [-40, 40]
Transform
<
DeviceContext
>
trans
;
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
->
numel
(),
pre_out_data
,
pre_out_data
+
pre_out
->
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
bit_code
.
Sum
(
*
pre_out
,
out
,
static_cast
<
T
>
(
-
1
));
bit_code
->
Sum
(
*
pre_out
,
out
,
static_cast
<
T
>
(
-
1
));
// use softrelu to calculate cross entropy
// use softrelu to calculate cross entropy
pre_out_mat
.
device
(
place
)
=
(
static_cast
<
T
>
(
1.0
)
+
pre_out_mat
.
exp
()).
log
();
pre_out_mat
.
device
(
place
)
=
(
static_cast
<
T
>
(
1.0
)
+
pre_out_mat
.
exp
()).
log
();
row_sum
(
dev_ctx
,
*
pre_out
,
&
sum
);
row_sum
(
dev_ctx
,
*
pre_out
,
&
sum
);
...
@@ -84,50 +114,103 @@ template <typename DeviceContext, typename T>
...
@@ -84,50 +114,103 @@ template <typename DeviceContext, typename T>
class
HierarchicalSigmoidGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
HierarchicalSigmoidGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
&
in
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
*
w
=
ctx
.
Input
<
framework
::
Tensor
>
(
"W"
);
auto
&
w
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
));
auto
*
in_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PTable"
);
auto
*
w_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"W"
));
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PathCode"
);
auto
*
bias_grad
=
auto
*
bias
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Bias"
);
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
in_grad
=
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
pre_out
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PreOut"
);
bool
is_sparse
=
ctx
.
Attr
<
bool
>
(
"is_sparse"
);
auto
*
out_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
framework
::
Tensor
pre_out_grad
;
pre_out_grad
.
mutable_data
<
T
>
(
pre_out
->
dims
(),
ctx
.
GetPlace
());
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
auto
&
label
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
));
auto
&
pre_out
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PreOut"
));
auto
&
out_grad
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
)));
framework
::
LoDTensor
pre_out_grad
;
pre_out_grad
.
mutable_data
<
T
>
(
pre_out
.
dims
(),
ctx
.
GetPlace
());
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
in_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
in_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
w_grad
,
static_cast
<
T
>
(
0.0
));
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
(
num_classes
,
label
->
data
<
int64_t
>
());
bool
is_custom
=
false
;
if
(
path
)
{
is_custom
=
true
;
}
std
::
unique_ptr
<
math
::
MatrixBitCodeFunctor
<
T
>>
bit_code
;
if
(
!
is_custom
)
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
num_classes
,
label
.
data
<
int64_t
>
()));
}
else
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
*
path
,
*
code
,
label
.
data
<
int64_t
>
()));
}
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
*
pre_out
);
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
pre_out
);
auto
pre_out_grad_mat
=
EigenMatrix
<
T
>::
From
(
pre_out_grad
);
auto
pre_out_grad_mat
=
EigenMatrix
<
T
>::
From
(
pre_out_grad
);
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
out_grad
);
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
out_grad
);
Eigen
::
array
<
int
,
2
>
bcast
{
1
,
static_cast
<
int
>
(
pre_out_grad
.
dims
()[
1
])};
Eigen
::
array
<
int
,
2
>
bcast
{
1
,
static_cast
<
int
>
(
pre_out_grad
.
dims
()[
1
])};
// softrelu derivative
// softrelu derivative
pre_out_grad_mat
.
device
(
place
)
=
pre_out_grad_mat
.
device
(
place
)
=
static_cast
<
T
>
(
1.0
)
-
static_cast
<
T
>
(
1.0
)
/
pre_out_mat
.
exp
();
static_cast
<
T
>
(
1.0
)
-
static_cast
<
T
>
(
1.0
)
/
pre_out_mat
.
exp
();
bit_code
.
Sub
(
&
pre_out_grad
);
// the gradient of clip(w * x + b)
bit_code
->
Sub
(
&
pre_out_grad
);
// the gradient of clip(w * x + b)
pre_out_grad_mat
.
device
(
place
)
=
pre_out_grad_mat
.
device
(
place
)
=
pre_out_grad_mat
*
out_grad_mat
.
broadcast
(
bcast
);
pre_out_grad_mat
*
out_grad_mat
.
broadcast
(
bcast
);
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
// be consistent with the clipping in forward.
// be consistent with the clipping in forward.
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
!
is_sparse
)
{
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
auto
*
bias_grad
=
bit_code
.
AddGrad
(
pre_out_grad
,
bias_grad
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
auto
*
w_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
w_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
->
MulGradWeight
(
pre_out_grad
,
w_grad
,
in
);
}
else
{
framework
::
Vector
<
int64_t
>
real_rows
=
PathToRows
(
*
path
);
auto
*
w_grad
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
w_grad
->
set_rows
(
real_rows
);
// Build a map of id -> row_index to speed up finding the index of one id
w_grad
->
SyncIndex
();
w_grad
->
set_height
(
w
.
dims
()[
0
]);
auto
*
w_grad_value
=
w_grad
->
mutable_value
();
framework
::
DDim
temp_dim
(
w
.
dims
());
set
(
temp_dim
,
0
,
real_rows
.
size
());
w_grad_value
->
mutable_data
<
T
>
(
temp_dim
,
ctx
.
GetPlace
());
zero
(
dev_ctx
,
w_grad_value
,
static_cast
<
T
>
(
0.0
));
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
bias_grad
)
{
bias_grad
->
set_rows
(
real_rows
);
// build ids -> rows index map
bias_grad
->
SyncIndex
();
bias_grad
->
set_height
(
bias
->
dims
()[
0
]);
auto
*
bias_grad_value
=
bias_grad
->
mutable_value
();
std
::
vector
<
int64_t
>
dims
=
{
static_cast
<
int64_t
>
(
real_rows
.
size
()),
bias
->
dims
()[
1
]};
bias_grad_value
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
dims
),
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad_value
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
bit_code
->
MulGradWeight
(
pre_out_grad
,
w_grad
,
in
);
}
}
bit_code
.
MulGradWeight
(
pre_out_grad
,
w_grad
,
*
in
);
bit_code
->
MulGradError
(
pre_out_grad
,
w
,
in_grad
);
bit_code
.
MulGradError
(
pre_out_grad
,
*
w
,
in_grad
);
}
}
};
};
...
...
paddle/fluid/operators/math/matrix_bit_code.cc
浏览文件 @
12e1719f
...
@@ -19,16 +19,15 @@ namespace operators {
...
@@ -19,16 +19,15 @@ namespace operators {
namespace
math
{
namespace
math
{
template
<
typename
T
>
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Add
(
framework
::
Tensor
*
tmat
,
void
MatrixBitCodeFunctor
<
T
>::
Add
(
const
framework
::
Tensor
&
vec
,
const
framework
::
Tensor
&
vec
)
{
framework
::
Tensor
*
tmat
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
batch_size
=
tmat
->
dims
()[
0
];
size_t
batch_size
=
tmat
->
dims
()[
0
];
size_t
width
=
tmat
->
dims
()[
1
];
size_t
width
=
tmat
->
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
.
get_length
();
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
tmat
->
data
<
T
>
()[
i
*
width
+
j
]
+=
vec
.
data
<
T
>
()[
index
];
tmat
->
data
<
T
>
()[
i
*
width
+
j
]
+=
vec
.
data
<
T
>
()[
index
];
}
}
}
}
...
@@ -37,31 +36,46 @@ void MatrixBitCodeFunctor<T>::Add(framework::Tensor* tmat,
...
@@ -37,31 +36,46 @@ void MatrixBitCodeFunctor<T>::Add(framework::Tensor* tmat,
template
<
typename
T
>
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
const
framework
::
Tensor
&
tmat
,
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
vec
)
{
framework
::
Tensor
*
vec
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
batch_size
=
tmat
.
dims
()[
0
];
size_t
batch_size
=
tmat
.
dims
()[
0
];
size_t
width
=
tmat
.
dims
()[
1
];
size_t
width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
.
get_length
();
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
vec
->
data
<
T
>
()[
index
]
+=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
vec
->
data
<
T
>
()[
index
]
+=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
}
}
}
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
vec
)
{
size_t
batch_size
=
tmat
.
dims
()[
0
];
size_t
width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
->
calc_index
(
j
);
int64_t
row_index
=
vec
->
GetIndexFromId
(
static_cast
<
int64_t
>
(
index
));
vec
->
mutable_value
()
->
data
<
T
>
()[
row_index
]
+=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
}
}
}
template
<
typename
T
>
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
const
framework
::
Tensor
&
tmat
,
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
sum
,
T
scale_sum
)
{
framework
::
Tensor
*
sum
,
T
scale_sum
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
o_width
=
tmat
.
dims
()[
1
];
size_t
o_width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
T
sm
=
static_cast
<
T
>
(
0.0
);
T
sm
=
static_cast
<
T
>
(
0.0
);
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
.
get_length
();
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
if
(
code
->
calc_bit
(
j
))
{
// calc_bit starts from right most bit, while data in tmat[i] is in the
// calc_bit starts from right most bit, while data in tmat[i] is in the
// reverse order.
// reverse order.
sm
+=
tmat
.
data
<
T
>
()[
i
*
o_width
+
j
];
sm
+=
tmat
.
data
<
T
>
()[
i
*
o_width
+
j
];
...
@@ -75,7 +89,6 @@ template <typename T>
...
@@ -75,7 +89,6 @@ template <typename T>
void
MatrixBitCodeFunctor
<
T
>::
Mul
(
framework
::
Tensor
*
tmat
,
void
MatrixBitCodeFunctor
<
T
>::
Mul
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
)
{
const
framework
::
Tensor
&
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
->
dims
()[
0
];
size_t
num_samples
=
tmat
->
dims
()[
0
];
size_t
tmat_width
=
tmat
->
dims
()[
1
];
size_t
tmat_width
=
tmat
->
dims
()[
1
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
input_width
=
input
.
dims
()[
1
];
...
@@ -84,10 +97,10 @@ void MatrixBitCodeFunctor<T>::Mul(framework::Tensor* tmat,
...
@@ -84,10 +97,10 @@ void MatrixBitCodeFunctor<T>::Mul(framework::Tensor* tmat,
auto
weight_value
=
weight
.
data
<
T
>
();
auto
weight_value
=
weight
.
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
.
get_length
();
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
T
sum
=
static_cast
<
T
>
(
0.0
);
T
sum
=
static_cast
<
T
>
(
0.0
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
sum
+=
weight_value
[
weight_width
*
index
+
k
]
*
sum
+=
weight_value
[
weight_width
*
index
+
k
]
*
...
@@ -102,7 +115,6 @@ template <typename T>
...
@@ -102,7 +115,6 @@ template <typename T>
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
weight
,
framework
::
Tensor
*
weight
,
const
framework
::
Tensor
&
input
)
{
const
framework
::
Tensor
&
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
...
@@ -111,10 +123,10 @@ void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
...
@@ -111,10 +123,10 @@ void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
auto
weight_value
=
weight
->
data
<
T
>
();
auto
weight_value
=
weight
->
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
.
get_length
();
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
weight_value
[
weight_width
*
index
+
k
]
+=
weight_value
[
weight_width
*
index
+
k
]
+=
...
@@ -124,11 +136,35 @@ void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
...
@@ -124,11 +136,35 @@ void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
}
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
weight
,
const
framework
::
Tensor
&
input
)
{
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
size_t
weight_width
=
weight
->
value
().
dims
()[
1
];
auto
tmat_value
=
tmat
.
data
<
T
>
();
auto
weight_value
=
weight
->
mutable_value
()
->
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
->
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
int64_t
row_index
=
weight
->
GetIndexFromId
(
static_cast
<
int64_t
>
(
index
));
weight_value
[
row_index
*
weight_width
+
k
]
+=
tmat_value
[
i
*
tmat_width
+
j
]
*
input_value
[
input_width
*
i
+
k
];
}
}
}
}
template
<
typename
T
>
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
MulGradError
(
const
framework
::
Tensor
&
tmat
,
void
MatrixBitCodeFunctor
<
T
>::
MulGradError
(
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
input
)
{
framework
::
Tensor
*
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
size_t
input_width
=
input
->
dims
()[
1
];
size_t
input_width
=
input
->
dims
()[
1
];
...
@@ -138,10 +174,10 @@ void MatrixBitCodeFunctor<T>::MulGradError(const framework::Tensor& tmat,
...
@@ -138,10 +174,10 @@ void MatrixBitCodeFunctor<T>::MulGradError(const framework::Tensor& tmat,
auto
input_value
=
input
->
data
<
T
>
();
auto
input_value
=
input
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
.
get_length
();
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
input_value
[
input_width
*
i
+
k
]
+=
input_value
[
input_width
*
i
+
k
]
+=
...
@@ -154,14 +190,13 @@ void MatrixBitCodeFunctor<T>::MulGradError(const framework::Tensor& tmat,
...
@@ -154,14 +190,13 @@ void MatrixBitCodeFunctor<T>::MulGradError(const framework::Tensor& tmat,
template
<
typename
T
>
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sub
(
framework
::
Tensor
*
tmat
)
{
void
MatrixBitCodeFunctor
<
T
>::
Sub
(
framework
::
Tensor
*
tmat
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
->
dims
()[
0
];
size_t
num_samples
=
tmat
->
dims
()[
0
];
size_t
o_width
=
tmat
->
dims
()[
1
];
size_t
o_width
=
tmat
->
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
.
get_length
();
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
if
(
code
->
calc_bit
(
j
))
{
tmat
->
data
<
T
>
()[
i
*
o_width
+
j
]
-=
1
;
tmat
->
data
<
T
>
()[
i
*
o_width
+
j
]
-=
1
;
}
}
}
}
...
...
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
12e1719f
...
@@ -14,6 +14,8 @@ limitations under the License. */
...
@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/device_context.h"
...
@@ -92,9 +94,27 @@ inline int clz(const T& value) {
...
@@ -92,9 +94,27 @@ inline int clz(const T& value) {
inline
size_t
FindLastSet
(
size_t
x
)
{
return
sizeof
(
size_t
)
*
8
-
clz
(
x
);
}
inline
size_t
FindLastSet
(
size_t
x
)
{
return
sizeof
(
size_t
)
*
8
-
clz
(
x
);
}
#endif // !_WIN32
#endif // !_WIN32
// set a code interface to create multiple code
class
Code
{
public:
virtual
~
Code
()
{}
virtual
size_t
calc_index
(
int
bit
)
const
=
0
;
virtual
bool
calc_bit
(
int
bit
)
const
=
0
;
virtual
int
get_length
()
const
=
0
;
};
// set a CodeTable interface to create multiple code table
class
CodeTable
{
public:
virtual
std
::
unique_ptr
<
Code
>
get_code
(
int64_t
code
)
const
=
0
;
virtual
size_t
size
()
const
=
0
;
virtual
int
get_max_code_length
()
const
=
0
;
virtual
~
CodeTable
()
{}
};
struct
SimpleCode
{
class
SimpleCode
:
public
Code
{
SimpleCode
(
size_t
code
,
size_t
num_classes
)
:
c_
(
code
+
num_classes
)
{}
public:
SimpleCode
(
size_t
code
,
size_t
num_classes
,
const
int64_t
*
ids
)
:
c_
(
static_cast
<
size_t
>
(
ids
[
code
])
+
num_classes
)
{}
/**
/**
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
* is `c + num_classes` and all siblings can get the same weight indice using
* is `c + num_classes` and all siblings can get the same weight indice using
...
@@ -104,41 +124,121 @@ struct SimpleCode {
...
@@ -104,41 +124,121 @@ struct SimpleCode {
* Binary classification path is the suffixes of encoding, thus leave out the
* Binary classification path is the suffixes of encoding, thus leave out the
* left most bit in calc_bit.
* left most bit in calc_bit.
*/
*/
inline
size_t
calc_index
(
int
bit
)
const
{
return
(
c_
>>
(
bit
+
1
))
-
1
;
}
size_t
calc_index
(
int
bit
)
const
{
return
(
c_
>>
(
bit
+
1
))
-
1
;
}
inline
bool
calc_bit
(
int
bit
)
const
{
return
c_
&
(
1
<<
bit
);
}
bool
calc_bit
(
int
bit
)
const
{
return
c_
&
(
1
<<
bit
);
}
in
line
in
t
get_length
()
const
{
return
FindLastSet
(
c_
)
-
1
;
}
int
get_length
()
const
{
return
FindLastSet
(
c_
)
-
1
;
}
private:
private:
size_t
c_
;
size_t
c_
;
};
};
struct
SimpleCodeTable
{
template
<
typename
T
>
explicit
SimpleCodeTable
(
size_t
num_classes
)
:
num_classes_
(
num_classes
)
{}
class
CustomCode
:
public
Code
{
SimpleCode
operator
()(
size_t
code
)
const
{
public:
return
SimpleCode
(
code
,
num_classes_
);
CustomCode
(
const
framework
::
Tensor
&
ptable
,
const
framework
::
Tensor
&
pcode
,
const
int64_t
*
ids
,
int
index
)
:
ids_
(
ids
),
index_
(
index
)
{
ptable_
=
ptable
.
Slice
(
index
,
index
+
1
);
pcode_
=
pcode
.
Slice
(
index
,
index
+
1
);
}
/**
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
* is `c + num_classes` and all siblings can get the same weight indice using
* prefixes.
* Weight index is the prefixes of encoding, thus leave out the right most
* bit in calc_index.
* Binary classification path is the suffixes of encoding, thus leave out the
* left most bit in calc_bit.
*/
size_t
calc_index
(
int
bit
)
const
{
return
ptable_
.
data
<
T
>
()[
bit
];
}
bool
calc_bit
(
int
bit
)
const
{
return
pcode_
.
data
<
T
>
()[
bit
];
}
int
get_length
()
const
{
int
length
=
0
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
ptable_
.
dims
()[
1
]);
i
++
)
{
if
(
ptable_
.
data
<
T
>
()[
i
]
>=
0
)
{
length
++
;
}
else
{
return
length
;
}
}
return
length
;
}
private:
framework
::
Tensor
ptable_
;
framework
::
Tensor
pcode_
;
const
int64_t
*
ids_
;
const
int
index_
;
};
class
SimpleCodeTable
:
public
CodeTable
{
public:
SimpleCodeTable
(
size_t
num_classes
,
const
int64_t
*
ids
)
:
num_classes_
(
num_classes
),
ids_
(
ids
)
{}
std
::
unique_ptr
<
Code
>
get_code
(
int64_t
code
)
const
{
std
::
unique_ptr
<
Code
>
coder
(
new
SimpleCode
(
code
,
num_classes_
,
ids_
));
return
coder
;
}
}
size_t
size
()
const
{
return
num_classes_
;
}
size_t
size
()
const
{
return
num_classes_
;
}
int
get_max_code_length
()
const
{
return
FindLastSet
(
num_classes_
-
1
);
}
int
get_max_code_length
()
const
{
return
FindLastSet
(
num_classes_
-
1
);
}
private:
private:
size_t
num_classes_
;
size_t
num_classes_
;
const
int64_t
*
ids_
;
};
template
<
typename
T
>
class
CustomCodeTable
:
public
CodeTable
{
public:
CustomCodeTable
(
const
framework
::
Tensor
&
ptable
,
const
framework
::
Tensor
&
pcode
,
const
int64_t
*
ids
)
:
ptable_
(
ptable
),
pcode_
(
pcode
),
ids_
(
ids
)
{}
std
::
unique_ptr
<
Code
>
get_code
(
int64_t
code
)
const
{
std
::
unique_ptr
<
Code
>
coder
(
new
CustomCode
<
T
>
(
ptable_
,
pcode_
,
ids_
,
code
));
return
coder
;
}
size_t
size
()
const
{
return
static_cast
<
size_t
>
(
ptable_
.
dims
()[
1
]);
}
int
get_max_code_length
()
const
{
return
static_cast
<
size_t
>
(
ptable_
.
dims
()[
1
]);
}
private:
const
framework
::
Tensor
&
ptable_
;
const
framework
::
Tensor
&
pcode_
;
const
int64_t
*
ids_
;
};
};
template
<
typename
T
>
template
<
typename
T
>
class
MatrixBitCodeFunctor
{
class
MatrixBitCodeFunctor
{
public:
public:
explicit
MatrixBitCodeFunctor
(
size_t
num_classes
,
const
int64_t
*
ids
)
MatrixBitCodeFunctor
(
size_t
num_classes
,
const
int64_t
*
ids
)
:
num_classes_
(
num_classes
),
ids_
(
ids
)
{}
:
num_classes_
(
num_classes
),
ids_
(
ids
),
code_table_
(
new
SimpleCodeTable
(
num_classes
,
ids
))
{}
MatrixBitCodeFunctor
(
const
framework
::
Tensor
&
ptable
,
const
framework
::
Tensor
&
pcode
,
const
int64_t
*
ids
)
:
num_classes_
(
static_cast
<
size_t
>
(
ptable
.
dims
()[
1
])),
ids_
(
ids
),
code_table_
(
new
CustomCodeTable
<
int64_t
>
(
ptable
,
pcode
,
ids
))
{}
/* For j < code_length
/* For j < code_length
tmat(i, j) += vec(0, index(i, j))
tmat(i, j) += vec(0, index(i, j))
*/
*/
void
Add
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
vec
);
void
Add
(
const
framework
::
Tensor
&
vec
,
framework
::
Tensor
*
tmat
);
/* For j < code_length
/* For j < code_length
vec(0, index(i, j)) += tmat(i, j)
vec(0, index(i, j)) += tmat(i, j)
*/
*/
void
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
vec
);
void
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
vec
);
/* For selected rows For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
void
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
vec
);
/* For j < code_length
/* For j < code_length
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
*/
*/
...
@@ -159,6 +259,12 @@ class MatrixBitCodeFunctor {
...
@@ -159,6 +259,12 @@ class MatrixBitCodeFunctor {
*/
*/
void
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
weight
,
void
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
weight
,
const
framework
::
Tensor
&
input
);
const
framework
::
Tensor
&
input
);
/* For SelectedRows Weight, For index(i, j) >= 0:
weight.row(index(i, j)) += tmat(i, j) * input.row(i)
*/
void
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
weight
,
const
framework
::
Tensor
&
input
);
/* For j < code_length
/* For j < code_length
input.row(i) += tmat(i, j) * weight.row(index(i, j))
input.row(i) += tmat(i, j) * weight.row(index(i, j))
*/
*/
...
@@ -167,6 +273,7 @@ class MatrixBitCodeFunctor {
...
@@ -167,6 +273,7 @@ class MatrixBitCodeFunctor {
size_t
num_classes_
;
size_t
num_classes_
;
const
int64_t
*
ids_
;
const
int64_t
*
ids_
;
std
::
unique_ptr
<
CodeTable
>
code_table_
;
};
};
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
12e1719f
...
@@ -4587,27 +4587,43 @@ def hsigmoid(input,
...
@@ -4587,27 +4587,43 @@ def hsigmoid(input,
num_classes
,
num_classes
,
param_attr
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
bias_attr
=
None
,
name
=
None
):
name
=
None
,
path_table
=
None
,
path_code
=
None
,
is_custom
=
False
,
is_sparse
=
False
):
"""
"""
The hierarchical sigmoid operator is used to accelerate the training
The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a
process of language model. This operator organizes the classes into a
complete binary tree, each leaf node represents a class(a word) and each
complete binary tree, or you can use is_custom to pass your own tree to
implement hierarchical. Each leaf node represents a class(a word) and each
internal node acts as a binary classifier. For each word there's a unique
internal node acts as a binary classifier. For each word there's a unique
path from root to it's leaf node, hsigmoid calculate the cost for each
path from root to it's leaf node, hsigmoid calculate the cost for each
internal node on the path, and sum them to get a total cost. hsigmoid can
internal node on the path, and sum them to get a total cost. hsigmoid can
achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
represents the size of word dict.
represents the size of word dict.
Refer to `Hierarchical Probabilistic Neural Network Language Model
Using default tree you can
Refer to `Hierarchical Probabilistic Neural Network Language Model
<http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
<http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
means label of each binary classification, using 1 indicate true, 0 indicate false.
4. now, each word should has its path and code along the path, you can pass a batch of path and code
related to the same batch of inputs.
Args:
Args:
input (Variable): The input tensor variable with shape
input (Variable): The input tensor variable with shape
:math:`[N
\\
times D]`, where :math:`N` is the size of mini-batch,
:math:`[N
\\
times D]`, where :math:`N` is the size of mini-batch,
and :math:`D` is the feature size.
and :math:`D` is the feature size.
label (Variable): The tensor variable contains labels of training data.
label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N
\\
times 1]`.
It's a tensor with shape is :math:`[N
\\
times 1]`.
num_classes: (int), The number of classes, must not be less than 2.
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
which indicates the num of classes using by binary classify.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
will create ParamAttr as param_attr. If the Initializer of the param_attr
will create ParamAttr as param_attr. If the Initializer of the param_attr
...
@@ -4619,9 +4635,19 @@ def hsigmoid(input,
...
@@ -4619,9 +4635,19 @@ def hsigmoid(input,
is not set, the bias is initialized zero. Default: None.
is not set, the bias is initialized zero. Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
will be named automatically. Default: None.
path_table: (Variable|None) this variable can store each batch of samples' path to root,
it should be in leaf -> root order
path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
structure and each element in this array is indexes in parent nodes' Weight Matrix.
path_code: (Variable|None) this variable can store each batch of samples' code,
each code consist with every code of parent nodes. it should be in leaf -> root order
is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
of W and input will be sparse.
Returns:
Returns:
Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
Out: (
Lod
Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
Examples:
Examples:
...
@@ -4637,27 +4663,62 @@ def hsigmoid(input,
...
@@ -4637,27 +4663,62 @@ def hsigmoid(input,
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
pre_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
pre_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
dim
=
input
.
shape
[
1
]
dim
=
input
.
shape
[
1
]
if
num_classes
<
2
:
if
((
num_classes
is
None
)
or
(
num_classes
<
2
))
and
(
not
is_custom
):
raise
ValueError
(
"num_classes must not be less than 2."
)
raise
ValueError
(
weights
=
helper
.
create_parameter
(
"num_classes must not be less than 2 with default tree"
)
attr
=
helper
.
param_attr
,
shape
=
[
num_classes
-
1
,
dim
],
if
(
is_custom
)
and
(
path_code
is
None
):
is_bias
=
False
,
raise
ValueError
(
"path_code should not be None with costum tree"
)
dtype
=
input
.
dtype
)
elif
(
is_custom
)
and
(
path_table
is
None
):
inputs
=
{
"X"
:
input
,
"W"
:
weights
,
"Label"
:
label
}
raise
ValueError
(
"path_table should not be None with costum tree"
)
if
helper
.
bias_attr
:
elif
(
is_custom
)
and
(
num_classes
is
None
):
bias
=
helper
.
create_parameter
(
raise
ValueError
(
"num_classes should not be None with costum tree"
)
attr
=
helper
.
bias_attr
,
else
:
shape
=
[
1
,
num_classes
-
1
],
pass
is_bias
=
True
,
weights
=
None
if
not
is_custom
:
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
num_classes
-
1
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
else
:
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
num_classes
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
inputs
=
{
"X"
:
input
,
"W"
:
weights
,
"PTable"
:
path_table
,
"PathCode"
:
path_code
,
"Label"
:
label
}
if
helper
.
bias_attr
:
if
not
is_custom
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
[
num_classes
-
1
,
1
],
is_bias
=
True
,
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
else
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
[
num_classes
,
1
],
is_bias
=
True
,
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
helper
.
append_op
(
helper
.
append_op
(
type
=
"hierarchical_sigmoid"
,
type
=
"hierarchical_sigmoid"
,
inputs
=
inputs
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
,
outputs
=
{
"Out"
:
out
,
"PreOut"
:
pre_out
},
"PreOut"
:
pre_out
},
attrs
=
{
"num_classes"
:
num_classes
})
attrs
=
{
"num_classes"
:
num_classes
,
"is_sparse"
:
is_sparse
})
return
out
return
out
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
12e1719f
...
@@ -16,6 +16,8 @@ from __future__ import print_function
...
@@ -16,6 +16,8 @@ from __future__ import print_function
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
import
math
import
math
from
op_test
import
OpTest
from
op_test
import
OpTest
...
@@ -40,6 +42,29 @@ class CodeTable(object):
...
@@ -40,6 +42,29 @@ class CodeTable(object):
return
self
.
c
&
(
1
<<
bit
)
return
self
.
c
&
(
1
<<
bit
)
class
CodeTableWithCustomTree
(
object
):
def
__init__
(
self
,
path_table
,
path_code
,
index
):
self
.
ptable_
=
path_table
self
.
pcode_
=
path_code
self
.
index_
=
index
def
cal_index
(
self
,
bit
):
return
self
.
ptable_
[
self
.
index_
][
bit
]
def
get_length
(
self
):
length
=
0
for
ele
in
self
.
ptable_
[
self
.
index_
]:
# find the first -1 to stop trace
if
ele
>=
0
:
length
=
length
+
1
else
:
return
length
return
length
def
cal_bit
(
self
,
bit
):
return
self
.
pcode_
[
self
.
index_
][
bit
]
def
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
):
def
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
):
batch_size
=
x
.
shape
[
0
]
batch_size
=
x
.
shape
[
0
]
code_length
=
find_latest_set
(
num_classes
-
1
)
code_length
=
find_latest_set
(
num_classes
-
1
)
...
@@ -52,7 +77,7 @@ def hsigmoid(x, w, label, bias, num_classes):
...
@@ -52,7 +77,7 @@ def hsigmoid(x, w, label, bias, num_classes):
length
=
code_table
.
get_length
()
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
bias
[
0
][
idx
]
pre_output
[
i
][
j
]
+=
bias
[
idx
][
0
]
for
i
in
range
(
batch_size
):
for
i
in
range
(
batch_size
):
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
length
=
code_table
.
get_length
()
length
=
code_table
.
get_length
()
...
@@ -77,17 +102,58 @@ def hsigmoid(x, w, label, bias, num_classes):
...
@@ -77,17 +102,58 @@ def hsigmoid(x, w, label, bias, num_classes):
return
pre_output
,
out
return
pre_output
,
out
def
hsigmoidWithCustomTree
(
x
,
w
,
path_table
,
path_code
,
label
,
bias
,
num_classes
):
batch_size
=
x
.
shape
[
0
]
code_length
=
len
(
path_table
[
0
])
code_table
=
[
0
for
_
in
range
(
code_length
)]
# init pre_out with shape [N, code_length]
pre_output
=
np
.
zeros
((
batch_size
,
code_length
))
pre_sum
=
np
.
zeros
((
batch_size
,
1
))
out
=
np
.
zeros
((
batch_size
,
1
)).
astype
(
"float32"
)
if
isinstance
(
bias
,
np
.
ndarray
):
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
path_table
,
path_code
,
i
)
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
bias
[
idx
][
0
]
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
path_table
,
path_code
,
i
)
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
np
.
dot
(
w
[
idx
],
x
[
i
])
# clip[-40.0, 40.0]
pre_output
=
np
.
clip
(
pre_output
,
-
40.0
,
40.0
)
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
path_table
,
path_code
,
i
)
length
=
code_table
.
get_length
()
sum
=
0.0
for
j
in
range
(
length
):
if
code_table
.
cal_bit
(
j
):
sum
+=
pre_output
[
i
][
j
]
out
[
i
]
=
-
1.0
*
sum
# soft relu
pre_output
=
np
.
log
(
1
+
np
.
exp
(
pre_output
))
pre_sum
=
pre_output
.
sum
(
1
).
reshape
((
batch_size
,
1
))
out
+=
pre_sum
return
pre_output
,
out
class
TestHSigmoidOp
(
OpTest
):
class
TestHSigmoidOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
num_classes
=
6
feature_size
=
8
feature_size
=
8
batch_size
=
4
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
((
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
random
.
randint
(
0
,
num_classes
,
(
batch_size
,
1
))
label
=
np
.
random
.
randint
(
0
,
num_classes
,
(
batch_size
,
1
))
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
bias
=
np
.
random
.
random
((
num_classes
-
1
,
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
}
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Label'
:
label
,
'Bias'
:
bias
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
)
pre_output
,
out
=
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
...
@@ -99,5 +165,185 @@ class TestHSigmoidOp(OpTest):
...
@@ -99,5 +165,185 @@ class TestHSigmoidOp(OpTest):
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
class
TestHSigmoidOpSparse
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
label
=
np
.
array
([
0
,
1
,
4
,
5
])
path_table
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_code
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
bias
=
np
.
random
.
random
((
num_classes
-
1
,
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
True
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
path_table
,
'PathCode'
:
path_code
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
,
w
,
path_table
,
path_code
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestHSigmoidOpWithSparseGrad
(
unittest
.
TestCase
):
def
hs_net_conf
(
self
,
is_sparse
):
input_word
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
1
],
dtype
=
'int64'
)
path_table
=
fluid
.
layers
.
data
(
name
=
'path_table'
,
shape
=
[
3
],
dtype
=
'int64'
)
path_code
=
fluid
.
layers
.
data
(
name
=
'path_code'
,
shape
=
[
3
],
dtype
=
'int64'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
data_list
=
[
input_word
,
path_table
,
path_code
,
label
]
emb
=
fluid
.
layers
.
embedding
(
input
=
input_word
,
is_sparse
=
is_sparse
,
size
=
[
3
,
3
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
3
))))
cost
=
fluid
.
layers
.
hsigmoid
(
input
=
emb
,
label
=
label
,
bias_attr
=
True
,
num_classes
=
3
,
path_table
=
path_table
,
path_code
=
path_code
,
is_custom
=
True
,
is_sparse
=
is_sparse
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
return
avg_cost
,
data_list
def
training_test
(
self
,
is_sparse
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
start_up
=
fluid
.
default_startup_program
()
start_up
.
random_seed
=
1
# Fix random seed
x
=
np
.
arange
(
6
).
reshape
(
6
)
path_table
=
np
.
array
([(
1
,
2
,
-
1
),
(
1
,
2
,
-
1
)])
path_code
=
np
.
array
([(
1
,
0
,
-
1
),
(
0
,
0
,
-
1
)])
label
=
np
.
array
([
1
,
4
])
loss
,
data_list
=
self
.
hs_net_conf
(
is_sparse
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-3
)
optimizer
.
minimize
(
loss
)
main_program
=
fluid
.
default_main_program
()
place
=
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
data_list
,
place
=
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
start_up
)
result
=
list
()
for
i
in
range
(
10
):
data
=
[([[
x
[
i
%
2
]]],
[
list
(
path_table
[
i
%
2
])],
[
list
(
path_code
[
i
%
2
])],
[
label
[
i
%
2
]])]
loss_val
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
result
.
append
(
loss_val
)
return
result
def
test_hs_grad_with_sparse
(
self
):
dense_result
=
self
.
training_test
(
is_sparse
=
False
)
sparse_result
=
self
.
training_test
(
is_sparse
=
True
)
assert
(
dense_result
==
sparse_result
)
class
TestHSigmoidOpWithCostumTree
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
array
([
0
,
1
,
4
,
5
])
path_table
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_code
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
bias
=
np
.
random
.
random
((
num_classes
-
1
,
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
path_table
,
'PathCode'
:
path_code
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
,
w
,
path_table
,
path_code
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
class
TestHSigmoidOpWithCostumTreeWithoutBias
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
array
([
0
,
1
,
4
,
5
])
path_table
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_code
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
# bias = np.random.random((num_classes - 1, 1)).astype("float32")
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
path_table
,
'PathCode'
:
path_code
,
'Label'
:
label
,
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
=
x
,
w
=
w
,
path_table
=
path_table
,
path_code
=
path_code
,
label
=
label
,
bias
=
None
,
num_classes
=
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
12e1719f
...
@@ -185,6 +185,25 @@ class TestBook(unittest.TestCase):
...
@@ -185,6 +185,25 @@ class TestBook(unittest.TestCase):
input
=
x
,
label
=
y
,
num_classes
=
2
))
input
=
x
,
label
=
y
,
num_classes
=
2
))
print
(
str
(
program
))
print
(
str
(
program
))
# test hsigmod with custom tree structure
program2
=
Program
()
with
program_guard
(
program2
):
x2
=
layers
.
data
(
name
=
'x2'
,
shape
=
[
4
,
8
],
dtype
=
'float32'
)
y2
=
layers
.
data
(
name
=
'y2'
,
shape
=
[
4
],
dtype
=
'int64'
)
path_table
=
layers
.
data
(
name
=
'path_table'
,
shape
=
[
4
,
6
],
dtype
=
'int64'
)
path_code
=
layers
.
data
(
name
=
'path_code'
,
shape
=
[
4
,
6
],
dtype
=
'int64'
)
self
.
assertIsNotNone
(
layers
.
hsigmoid
(
input
=
x2
,
label
=
y2
,
num_classes
=
6
,
path_table
=
path_table
,
path_code
=
path_code
,
is_custom
=
True
))
print
(
str
(
program2
))
def
test_sequence_expand
(
self
):
def
test_sequence_expand
(
self
):
program
=
Program
()
program
=
Program
()
with
program_guard
(
program
):
with
program_guard
(
program
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录