Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
113cd6b3
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
113cd6b3
编写于
1月 23, 2018
作者:
Y
ying
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add multi-head scaled_dot_product attention.
上级
abf9395d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
33 addition
and
17 deletion
+33
-17
python/paddle/v2/fluid/nets.py
python/paddle/v2/fluid/nets.py
+33
-17
未找到文件。
python/paddle/v2/fluid/nets.py
浏览文件 @
113cd6b3
...
...
@@ -11,14 +11,14 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
pdb
import
layers
__all__
=
[
"simple_img_conv_pool"
,
"sequence_conv_pool"
,
"glu"
,
"dot_product_attention"
,
"
scaled_
dot_product_attention"
,
]
...
...
@@ -179,7 +179,7 @@ def scaled_dot_product_attention(queries,
.. math::
Attention(Q, K, V)=
softmax(QK^\mathrm{T})V
Attention(Q, K, V)= softmax(QK^\mathrm{T})V
Refer to `Attention Is All You Need
<https://arxiv.org/pdf/1706.03762.pdf>`_.
...
...
@@ -195,8 +195,8 @@ def scaled_dot_product_attention(queries,
LoDTensor.
Returns:
tuple: The Tensor variables representing the output and attention
scores
.
Variable: The context Tensor computed by multi-head scaled dot product
attention
.
Examples:
.. code-block:: python
...
...
@@ -239,26 +239,42 @@ def scaled_dot_product_attention(queries,
Returns:
a Tensor with shape [..., n, m/n]
"""
if
num_heads
==
1
:
return
x
hidden_size
=
x
.
shape
[
-
1
]
#
# reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
# into a 4-D output:
# [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
reshaped
=
layers
.
reshape
(
x
=
x
,
shape
=
x
.
shape
[:
-
1
]
+
[
num_heads
,
hidden_size
//
num_heads
])
pass
def
__combine_heads
():
pass
q
=
__split_heads
(
quries
,
num_heads
)
x
=
x
,
shape
=
list
(
x
.
shape
[:
-
1
])
+
[
num_heads
,
hidden_size
//
num_heads
])
# permuate the original dimensions into:
# [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
return
layers
.
transpose
(
x
=
reshaped
,
perm
=
[
0
,
2
,
1
,
3
])
def
__combine_heads
(
x
):
if
len
(
x
.
shape
)
==
3
:
return
if
len
(
x
.
shape
)
!=
4
:
raise
ValueError
(
"Input(x) should be a 4-D Tensor."
)
trans_x
=
layers
.
transpose
(
x
,
perm
=
[
x
.
shape
[
0
],
x
.
shape
[
2
],
x
.
shape
[
1
],
x
.
shape
[
3
]])
return
layers
.
reshape
(
x
=
layers
.
reshape
(
x
=
trans_x
,
shape
=
[
trans_x
.
shape
[
0
],
trans_x
[
1
],
trans_x
[
2
]
*
trans_x
[
3
]]))
q
=
__split_heads
(
queries
,
num_heads
)
k
=
__split_heads
(
keys
,
num_heads
)
v
=
__split_heads
(
values
,
num_heads
)
key_dim_per_head
=
keys
.
shape
[
-
1
]
//
num_heads
scale
=
key_dim_per_head
**-
0.5
scaled_q
=
layers
.
scale
(
x
=
q
,
scale
=
key_dim_per_head
**-
0.5
)
product
=
layers
.
matmul
(
x
=
k
,
y
=
scaled_q
,
transpose_y
=
True
)
product
=
layers
.
matmul
(
x
=
k
,
y
=
q
,
transpose_y
=
True
)
attn_scores
=
layers
.
reshape
(
x
=
layers
.
reshape
(
x
=
product
,
shape
=
[
-
1
,
product
.
shape
[
-
1
]],
act
=
"softmax"
),
shape
=
product
.
shape
)
context
=
layers
.
matmul
(
attn_scores
,
values
)
return
context
,
attn_scores
ctx_multiheads
=
layers
.
matmul
(
attn_scores
,
values
)
context
=
__combine_heads
(
ctx_multiheads
)
return
context
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录