Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0f83674c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0f83674c
编写于
11月 17, 2017
作者:
C
chengduo
提交者:
GitHub
11月 17, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5603 from chengduoZH/Add_conv3d_transpose_cudnn_op
add conv3d_trans_cudnn_op
上级
2113cbfd
c359e39b
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
122 addition
and
54 deletion
+122
-54
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+20
-13
paddle/operators/conv_cudnn_op.cu.cc
paddle/operators/conv_cudnn_op.cu.cc
+4
-6
paddle/operators/conv_op.cc
paddle/operators/conv_op.cc
+8
-4
paddle/operators/conv_op.cu.cc
paddle/operators/conv_op.cu.cc
+8
-4
paddle/operators/conv_transpose_cudnn_op.cc
paddle/operators/conv_transpose_cudnn_op.cc
+29
-1
paddle/operators/conv_transpose_cudnn_op.cu.cc
paddle/operators/conv_transpose_cudnn_op.cu.cc
+20
-11
paddle/operators/conv_transpose_op.cc
paddle/operators/conv_transpose_op.cc
+8
-4
paddle/operators/conv_transpose_op.cu.cc
paddle/operators/conv_transpose_op.cu.cc
+8
-4
paddle/operators/pool_cudnn_op.cu.cc
paddle/operators/pool_cudnn_op.cu.cc
+1
-2
paddle/platform/cudnn_helper.h
paddle/platform/cudnn_helper.h
+10
-5
python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py
python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py
+6
-0
未找到文件。
paddle/operators/CMakeLists.txt
浏览文件 @
0f83674c
...
...
@@ -61,6 +61,18 @@ function(op_library TARGET)
set
(
pybind_flag 1
)
endif
()
if
(
"
${
TARGET
}
"
STREQUAL
"compare_op"
)
set
(
pybind_flag 1
)
file
(
APPEND
${
pybind_file
}
"USE_OP(less_than);
\n
USE_OP(equal);
\n
"
)
endif
()
# conv_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"conv_op"
)
set
(
pybind_flag 1
)
# It's enough to just adding one operator to pybind
file
(
APPEND
${
pybind_file
}
"USE_OP(conv2d);
\n
"
)
endif
()
# pool_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"pool_op"
)
set
(
pybind_flag 1
)
...
...
@@ -68,9 +80,11 @@ function(op_library TARGET)
file
(
APPEND
${
pybind_file
}
"USE_OP(pool2d);
\n
"
)
endif
()
if
(
"
${
TARGET
}
"
STREQUAL
"compare_op"
)
# pool_cudnn_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"pool_cudnn_op"
)
set
(
pybind_flag 1
)
file
(
APPEND
${
pybind_file
}
"USE_OP(less_than);
\n
USE_OP(equal);
\n
"
)
# It's enough to just adding one operator to pybind
file
(
APPEND
${
pybind_file
}
"USE_OP(pool2d_cudnn);
\n
"
)
endif
()
# pool_with_index_op contains several operators
...
...
@@ -80,25 +94,18 @@ function(op_library TARGET)
file
(
APPEND
${
pybind_file
}
"USE_OP(max_pool2d_with_index);
\n
"
)
endif
()
# conv_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"conv_op"
)
set
(
pybind_flag 1
)
# It's enough to just adding one operator to pybind
file
(
APPEND
${
pybind_file
}
"USE_OP(conv2d);
\n
"
)
endif
()
# conv_transpose_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"conv_transpose_op"
)
set
(
pybind_flag 1
)
# It's enough to just adding one operator to pybind
file
(
APPEND
${
pybind_file
}
"USE_OP(conv2d_transpose);
\n
"
)
endif
()
#
pool_cudnn_op contains several
operators
if
(
"
${
TARGET
}
"
STREQUAL
"
pool
_cudnn_op"
)
#
conv_transpose_cudnn_op contains two
operators
if
(
"
${
TARGET
}
"
STREQUAL
"
conv_transpose
_cudnn_op"
)
set
(
pybind_flag 1
)
# It's enough to just adding one operator to pybind
file
(
APPEND
${
pybind_file
}
"USE_OP(
pool2d
_cudnn);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP(
conv2d_transpose
_cudnn);
\n
"
)
endif
()
# save_restore_op contains several operators
...
...
paddle/operators/conv_cudnn_op.cu.cc
浏览文件 @
0f83674c
...
...
@@ -226,9 +226,8 @@ class CudnnConvGradOpKernel : public framework::OpKernel<T> {
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
if
(
input_grad
)
{
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
t
.
device
(
ctx
.
GetEigenDevice
<
platform
::
GPUPlace
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
// Because beta is zero, it is unnecessary to reset input_grad.
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
handle
,
&
alpha
,
cudnn_filter_desc
,
...
...
@@ -241,9 +240,8 @@ class CudnnConvGradOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn conv backward filter ---------------------
if
(
filter_grad
)
{
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
filter_grad
);
t
.
device
(
ctx
.
GetEigenDevice
<
platform
::
GPUPlace
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
// Because beta is zero, it is unnecessary to reset filter_grad.
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
...
...
paddle/operators/conv_op.cc
浏览文件 @
0f83674c
...
...
@@ -225,11 +225,15 @@ REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
ops
::
ConvOpGrad
);
REGISTER_OP_CPU_KERNEL
(
conv2d
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
conv2d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
conv2d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
conv3d
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
conv3d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
conv3d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/conv_op.cu.cc
浏览文件 @
0f83674c
...
...
@@ -17,11 +17,15 @@
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
conv2d
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GemmConvKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
conv2d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
conv2d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
conv3d
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GemmConvKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
GemmConvKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
conv3d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
conv3d_grad
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
GemmConvGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
paddle/operators/conv
2d
_transpose_cudnn_op.cc
→
paddle/operators/conv_transpose_cudnn_op.cc
浏览文件 @
0f83674c
...
...
@@ -23,7 +23,24 @@ class CudnnConv2DTransposeOpMaker : public Conv2DTransposeOpMaker {
framework
::
OpAttrChecker
*
op_checker
)
:
Conv2DTransposeOpMaker
(
proto
,
op_checker
)
{
AddAttr
<
std
::
vector
<
int
>>
(
"dilations"
,
"dilations of convolution operator."
)
.
SetDefault
(
std
::
vector
<
int
>
{
1
,
1
});
.
SetDefault
({
1
,
1
});
AddAttr
<
int
>
(
"workspace_size_MB"
,
"workspace size for cudnn, in MB, "
"workspace is a section of GPU memory which will be "
"allocated/freed each time the operator runs, larger "
"workspace size can increase performance but also requires "
"better hardward. This size should be carefully setted."
)
.
SetDefault
(
4096
);
}
};
class
CudnnConv3DTransposeOpMaker
:
public
Conv3DTransposeOpMaker
{
public:
CudnnConv3DTransposeOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
Conv3DTransposeOpMaker
(
proto
,
op_checker
)
{
AddAttr
<
std
::
vector
<
int
>>
(
"dilations"
,
"dilations of convolution operator."
)
.
SetDefault
({
1
,
1
,
1
});
AddAttr
<
int
>
(
"workspace_size_MB"
,
"workspace size for cudnn, in MB, "
"workspace is a section of GPU memory which will be "
...
...
@@ -48,3 +65,14 @@ REGISTER_OP_CPU_KERNEL(
REGISTER_OP_CPU_KERNEL
(
conv2d_transpose_cudnn_grad
,
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP
(
conv3d_transpose_cudnn
,
ops
::
ConvTransposeOp
,
ops
::
CudnnConv3DTransposeOpMaker
,
conv3d_transpose_cudnn_grad
,
ops
::
ConvTransposeOpGrad
);
REGISTER_OP_CPU_KERNEL
(
conv3d_transpose_cudnn
,
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
conv3d_transpose_cudnn_grad
,
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/conv
2d
_transpose_cudnn_op.cu.cc
→
paddle/operators/conv_transpose_cudnn_op.cu.cc
浏览文件 @
0f83674c
...
...
@@ -54,15 +54,21 @@ class CudnnConvTransposeOpKernel : public framework::OpKernel<T> {
ScopedTensorDescriptor
output_desc
;
ScopedFilterDescriptor
filter_desc
;
ScopedConvolutionDescriptor
conv_desc
;
DataLayout
layout
=
DataLayout
::
kNCHW
;
DataLayout
layout
;
if
(
strides
.
size
()
==
2U
)
{
layout
=
DataLayout
::
kNCHW
;
}
else
{
layout
=
DataLayout
::
kNCDHW
;
}
//
N, M, H, W
//
(N, M, H, W) or (N, M, D, H, W)
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
input
->
dims
()));
//
N, C, O_h, O_w
//
(N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
output
->
dims
()));
//
M, C, K_h, K_w
//
(M, C, K_h, K_w) or (M, C, K_d, K_h, K_w)
cudnnFilterDescriptor_t
cudnn_filter_desc
=
filter_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
filter
->
dims
()));
cudnnConvolutionDescriptor_t
cudnn_conv_desc
=
...
...
@@ -136,13 +142,13 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
ScopedConvolutionDescriptor
conv_desc
;
DataLayout
layout
=
DataLayout
::
kNCHW
;
// Input: (N, M, H, W)
// Input: (N, M, H, W)
or (N, M, D, H, W)
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
input
->
dims
()));
// Output: (N, C, O_
H, O_W
)
// Output: (N, C, O_
h, O_w) or (N, C, O_d, O_h, O_w
)
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
output_grad
->
dims
()));
// Filter (M, C, K_
H, K_W
)
// Filter (M, C, K_
h, K_w) or (M, C, K_d K_h, K_w
)
cudnnFilterDescriptor_t
cudnn_filter_desc
=
filter_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
filter
->
dims
()));
...
...
@@ -200,8 +206,7 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
if
(
input_grad
)
{
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
set_constant
(
ctx
.
device_context
(),
input_grad
,
0
);
// Because beta is zero, it is unnecessary to reset input_grad.
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
,
cudnn_filter_desc
,
filter_data
,
cudnn_conv_desc
,
data_algo
,
...
...
@@ -212,8 +217,7 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn conv backward filter ---------------------
if
(
filter_grad
)
{
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
set_constant
(
ctx
.
device_context
(),
filter_grad
,
0
);
// Because beta is zero, it is unnecessary to reset filter_grad.
// Gradient with respect to the filter
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
,
cudnn_input_desc
,
...
...
@@ -234,3 +238,8 @@ REGISTER_OP_GPU_KERNEL(conv2d_transpose_cudnn,
ops
::
CudnnConvTransposeOpKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
conv2d_transpose_cudnn_grad
,
ops
::
CudnnConvTransposeGradOpKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
conv3d_transpose_cudnn
,
ops
::
CudnnConvTransposeOpKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
conv3d_transpose_cudnn_grad
,
ops
::
CudnnConvTransposeGradOpKernel
<
float
>
);
paddle/operators/conv_transpose_op.cc
浏览文件 @
0f83674c
...
...
@@ -185,17 +185,21 @@ REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
REGISTER_OP_CPU_KERNEL
(
conv2d_transpose
,
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
conv2d_transpose_grad
,
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP
(
conv3d_transpose
,
ops
::
ConvTransposeOp
,
ops
::
Conv3DTransposeOpMaker
,
conv3d_transpose_grad
,
ops
::
ConvTransposeOpGrad
);
REGISTER_OP_CPU_KERNEL
(
conv3d_transpose
,
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
conv3d_transpose_grad
,
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/conv_transpose_op.cu.cc
浏览文件 @
0f83674c
...
...
@@ -18,14 +18,18 @@ namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL
(
conv2d_transpose
,
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
conv2d_transpose_grad
,
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
conv3d_transpose
,
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
GemmConvTransposeKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
conv3d_transpose_grad
,
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
GemmConvTransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
paddle/operators/pool_cudnn_op.cu.cc
浏览文件 @
0f83674c
...
...
@@ -135,8 +135,7 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> {
if
(
input_grad
)
{
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
paddle
::
platform
::
GPUPlace
,
T
>
set_zero
;
set_zero
(
ctx
.
device_context
(),
input_grad
,
static_cast
<
T
>
(
0
));
// Because beta is zero, it is unnecessary to reset input_grad.
PADDLE_ENFORCE
(
platform
::
dynload
::
cudnnPoolingBackward
(
handle
,
cudnn_pool_desc
,
&
alpha
,
cudnn_output_desc
,
output_data
,
...
...
paddle/platform/cudnn_helper.h
浏览文件 @
0f83674c
...
...
@@ -63,9 +63,10 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
} \
} while (false)
enum
class
DataLayout
{
enum
class
DataLayout
{
// Not use
kNHWC
,
kNCHW
,
kNCDHW
,
kNCHW_VECT_C
,
};
...
...
@@ -107,12 +108,15 @@ class CudnnDataType<double> {
}
};
inline
cudnnTensorFormat_t
GetCudnnTensorFormat
(
const
DataLayout
&
order
)
{
inline
cudnnTensorFormat_t
GetCudnnTensorFormat
(
const
DataLayout
&
order
)
{
// Not use
switch
(
order
)
{
case
DataLayout
::
kNHWC
:
return
CUDNN_TENSOR_NHWC
;
case
DataLayout
::
kNCHW
:
return
CUDNN_TENSOR_NCHW
;
case
DataLayout
::
kNCDHW
:
return
CUDNN_TENSOR_NCHW
;
// TODO(chengduoZH) : add CUDNN_TENSOR_NCDHW
default:
PADDLE_THROW
(
"Unknown cudnn equivalent for order"
);
}
...
...
@@ -139,7 +143,7 @@ class ScopedTensorDescriptor {
strides
[
i
]
=
dims
[
i
+
1
]
*
strides
[
i
+
1
];
}
// Update tensor descriptor dims setting if groups > 1
// FIXME(typhoonzero): Assume using NCHW order
// FIXME(typhoonzero): Assume using NCHW or
NCDHW or
der
std
::
vector
<
int
>
dims_with_group
(
dims
.
begin
(),
dims
.
end
());
// copy
if
(
groups
>
1
)
{
dims_with_group
[
1
]
=
dims_with_group
[
1
]
/
groups
;
...
...
@@ -176,9 +180,10 @@ class ScopedFilterDescriptor {
const
cudnnDataType_t
type
,
const
std
::
vector
<
int
>&
kernel
,
const
int
groups
=
1
)
{
// filter layout: MCHW, where M is the number of
// filter layout: MCHW
(MCDHW)
, where M is the number of
// output image channels, C is the number of input image channels,
// H and W is height and width of filter.
// D is the depth of the filter, H is the height of the filter, and W is the
// width of the filter.
std
::
vector
<
int
>
kernel_with_group
(
kernel
.
begin
(),
kernel
.
end
());
if
(
groups
>
1
)
{
// M /= groups
...
...
python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py
浏览文件 @
0f83674c
...
...
@@ -108,5 +108,11 @@ class TestWithStride(TestConv3dTransposeOp):
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
,
3
]
# ------------ test_cudnn ------------
class
TestCudnn
(
TestConv3dTransposeOp
):
def
init_op_type
(
self
):
self
.
op_type
=
"conv3d_transpose_cudnn"
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录