Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0f6ef8ed
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0f6ef8ed
编写于
12月 29, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add MNIST
test=develop
上级
a7966e67
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
38 addition
and
24 deletion
+38
-24
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+1
-1
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+37
-23
未找到文件。
python/paddle/fluid/imperative/nn.py
浏览文件 @
0f6ef8ed
...
@@ -99,7 +99,7 @@ class Conv2D(layers.PyLayer):
...
@@ -99,7 +99,7 @@ class Conv2D(layers.PyLayer):
self
.
_bias_param
=
self
.
_helper
.
create_parameter
(
self
.
_bias_param
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
bias_attr
,
attr
=
self
.
_helper
.
bias_attr
,
shape
=
[
num_filter
_channel
s
],
shape
=
[
num_filters
],
dtype
=
self
.
_dtype
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
is_bias
=
True
)
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
0f6ef8ed
...
@@ -29,8 +29,8 @@ from test_imperative_base import new_program_scope
...
@@ -29,8 +29,8 @@ from test_imperative_base import new_program_scope
class
SimpleImgConvPool
(
fluid
.
imperative
.
PyLayer
):
class
SimpleImgConvPool
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
,
def
__init__
(
self
,
num_channels
,
num_channels
,
filter_size
,
num_filters
,
num_filters
,
filter_size
,
pool_size
,
pool_size
,
pool_stride
,
pool_stride
,
pool_padding
=
0
,
pool_padding
=
0
,
...
@@ -77,10 +77,10 @@ class MNIST(fluid.imperative.PyLayer):
...
@@ -77,10 +77,10 @@ class MNIST(fluid.imperative.PyLayer):
super
(
MNIST
,
self
).
__init__
(
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
super
(
MNIST
,
self
).
__init__
(
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
1
,
5
,
20
,
2
,
2
,
act
=
"relu"
)
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
20
,
5
,
50
,
2
,
2
,
act
=
"relu"
)
20
,
5
0
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
8
*
8
pool_2_shape
=
50
*
8
*
8
SIZE
=
10
SIZE
=
10
...
@@ -106,18 +106,15 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -106,18 +106,15 @@ class TestImperativeMnist(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
mnist
=
Conv2D
(
1
,
20
,
5
)
# mnist = Conv2D(1, 20, 5)
mnist
=
MNIST
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
dy_param_value
=
{}
dy_param_init_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
1
:
if
batch_id
>=
2
:
break
break
x_data
=
np
.
array
(
x_data
=
np
.
array
(
...
@@ -133,9 +130,17 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -133,9 +130,17 @@ class TestImperativeMnist(unittest.TestCase):
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
dy_out
=
loss
.
_numpy
()
dy_out
=
loss
.
_numpy
()
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
loss
.
_backward
()
loss
.
_backward
()
sgd
.
minimize
(
loss
)
sgd
.
minimize
(
loss
)
dy_filter_param
=
mnist
.
_filter_param
.
_numpy
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
with
new_program_scope
():
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
...
@@ -143,7 +148,8 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -143,7 +148,8 @@ class TestImperativeMnist(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
mnist
=
Conv2D
(
1
,
20
,
5
)
# mnist = Conv2D(1, 20, 5)
mnist
=
MNIST
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
...
@@ -156,7 +162,7 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -156,7 +162,7 @@ class TestImperativeMnist(unittest.TestCase):
sgd
.
minimize
(
loss
)
sgd
.
minimize
(
loss
)
# initialize params and fetch them
# initialize params and fetch them
static_param_value
=
{}
static_param_
init_
value
=
{}
static_param_name_list
=
[]
static_param_name_list
=
[]
for
param
in
fluid
.
default_startup_program
().
global_block
(
for
param
in
fluid
.
default_startup_program
().
global_block
(
).
all_parameters
():
).
all_parameters
():
...
@@ -166,27 +172,35 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -166,27 +172,35 @@ class TestImperativeMnist(unittest.TestCase):
fetch_list
=
static_param_name_list
)
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
static_param_
init_
value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
1
:
if
batch_id
>=
2
:
break
break
x_data
=
np
.
array
(
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
128
,
1
])
[
128
,
1
])
static_out
,
static_filter_param
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
x_data
,
"label"
:
y_data
},
fetch_list
=
[
loss
.
name
,
mnist
.
_filter_param
.
name
])
fetch_list
=
[
loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_out
=
out
[
0
]
for
i
in
range
(
1
,
len
(
out
)):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_init_value
[
key
].
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_out
.
all
(),
dy_out
.
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_value
[
key
].
all
()))
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_value
[
key
].
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_out
.
all
(),
dy_out
.
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_filter_param
.
all
(),
dy_filter_param
.
all
()))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录