Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0e337bec
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0e337bec
编写于
7月 28, 2017
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'feature/backward' of
https://github.com/reyoung/Paddle
into feature/backward
上级
71bd439b
0da5cce2
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
72 addition
and
28 deletion
+72
-28
paddle/framework/backward.cc
paddle/framework/backward.cc
+43
-18
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+29
-10
未找到文件。
paddle/framework/backward.cc
浏览文件 @
0e337bec
...
...
@@ -50,50 +50,72 @@ static std::shared_ptr<OperatorBase> EmptyOp() {
return
net_op
;
}
/**
* @brief Backward an operator, implementation
* @param forwardOp the forward operator
* @param no_grad_names variable names not calculate for gradient. Like X@GRAD
* is not needed.
* @param uniq_id a unique index used inside BackwardImpl, it will be shared
* through recursive invoke.
* @return The backward operator. For simple situation, it is a simple operator.
* For complex situation, it is a NetOp.
*
* See Backward.h for details
*/
static
std
::
shared_ptr
<
OperatorBase
>
BackwardImpl
(
const
OperatorBase
&
forwardOp
,
std
::
unordered_set
<
std
::
string
>&
no_grad_names
,
size_t
&
uniq_id
)
{
/**
* If all input gradients of forwarding operator do not need to calculate,
* just return an EmptyOp. Not return null ptr because EmptyOp does not take
* too much time for calculation, but it is useful for simplifying logic.
*/
if
(
AllInSet
(
forwardOp
.
inputs_
,
OperatorBase
::
GRAD_VAR_SUFFIX
(),
no_grad_names
))
{
return
EmptyOp
();
}
/**
* All output gradients of forwarding operator do not need to calculate. Then
* all input gradients cannot be computed at all, and we put them into
* `no_grad_names` set. Return an EmptyOp.
*/
if
(
AllInSet
(
forwardOp
.
outputs_
,
OperatorBase
::
GRAD_VAR_SUFFIX
(),
no_grad_names
))
{
for
(
auto
&
name
:
forwardOp
.
inputs_
)
{
// Mark all input is not need
//
/
Mark all input is not need
no_grad_names
.
insert
(
name
+
OperatorBase
::
GRAD_VAR_SUFFIX
());
}
return
EmptyOp
();
}
//! Returned gradient network
auto
net
=
std
::
make_shared
<
NetOp
>
();
if
(
forwardOp
.
IsNetOp
())
{
//! TODO(dzh)
std
::
unordered_map
<
std
::
string
/*var name*/
,
std
::
vector
<
size_t
>
/*op offset*/
>
dup_output_ops
;
size_t
local_op_id
=
0
;
// Because it is a net op, it can static_cast.
/// Because forwardOp is a net op, it can static_cast.
auto
&
forwardNet
=
static_cast
<
const
NetOp
&>
(
forwardOp
);
// travesal subnet/op
//! Map from output gradient variable name to operator's indices in backward
//! net. That operator generates that variable.
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
size_t
>>
dup_output_ops
;
size_t
local_op_id
=
0
;
/// reversely travel forwardNet
for
(
auto
it
=
forwardNet
.
ops_
.
rbegin
();
it
!=
forwardNet
.
ops_
.
rend
();
++
it
)
{
++
it
,
++
local_op_id
)
{
auto
fwd
=
*
it
;
auto
bwd
=
BackwardImpl
(
*
fwd
,
no_grad_names
,
uniq_id
);
net
->
AddOp
(
bwd
);
for
(
size_t
i
=
0
;
i
<
bwd
->
outputs_
.
size
();
++
i
)
{
dup_output_ops
[
bwd
->
outputs_
[
i
]
].
emplace_back
(
local_op_id
);
for
(
auto
&
out
:
bwd
->
outputs_
)
{
dup_output_ops
[
out
].
emplace_back
(
local_op_id
);
}
local_op_id
++
;
}
//
unique the duplicate name
//
/ Get unique ID for this method.
auto
uid
=
uniq_id
++
;
// TODO(dzh): more comment
typedef
std
::
pair
<
size_t
,
std
::
shared_ptr
<
OperatorBase
>>
Pos
;
std
::
list
<
Pos
>
insert_postion
;
using
Pos
=
std
::
pair
<
size_t
,
std
::
shared_ptr
<
OperatorBase
>>
;
std
::
list
<
Pos
>
insert_pos
i
tion
;
for
(
auto
&
dup_output_op
:
dup_output_ops
)
{
const
std
::
string
&
name
=
dup_output_op
.
first
;
auto
&
dup_op
=
dup_output_op
.
second
;
...
...
@@ -106,16 +128,18 @@ static std::shared_ptr<OperatorBase> BackwardImpl(
std
::
to_string
(
i
));
net
->
ops_
[
op_offset
]
->
Rename
(
name
,
dup_outputs
.
back
());
}
insert_postion
.
push_back
(
insert_pos
i
tion
.
push_back
(
{
dup_op
.
back
(),
OpRegistry
::
CreateOp
(
"add"
,
{
dup_outputs
},
{
name
},
{{
"input_format"
,
std
::
vector
<
int
>
{
0
,
(
int
)
dup_outputs
.
size
()}}})});
}
insert_postion
.
sort
(
insert_position
.
sort
(
[](
const
Pos
&
l
,
const
Pos
&
r
)
{
return
l
.
first
>
r
.
first
;
});
for
(
auto
&
pos
:
insert_postion
)
{
for
(
auto
&
pos
:
insert_position
)
{
net
->
InsertOp
(
pos
.
first
,
pos
.
second
);
}
...
...
@@ -148,6 +172,7 @@ static std::shared_ptr<OperatorBase> BackwardImpl(
return
net
;
}
//! See header for comments
extern
std
::
shared_ptr
<
OperatorBase
>
Backward
(
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>&
no_grad_vars
)
{
...
...
paddle/framework/backward_test.cc
浏览文件 @
0e337bec
...
...
@@ -13,6 +13,7 @@
limitations under the License. */
#include "paddle/framework/backward.h"
#include <gtest/gtest.h>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
...
...
@@ -142,6 +143,7 @@ REGISTER_OP(fill_zeros_like, f::EmptyOp, f::FillZeroOpMaker);
REGISTER_OP
(
add
,
f
::
EmptyOp
,
f
::
AddOpMaker
);
REGISTER_GRADIENT_OP
(
add
,
add_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
fc
,
f
::
FcOp
,
f
::
FcOpMaker
);
REGISTER_GRADIENT_OP
(
fc
,
fc_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
many_output_op
,
f
::
EmptyOp
,
f
::
ManyOutputOpMaker
);
REGISTER_GRADIENT_OP
(
many_output_op
,
many_output_op_grad
,
f
::
EmptyOp
);
...
...
@@ -160,6 +162,18 @@ TEST(Backward, simple_op_grad) {
// LOG(INFO) << gop->Output("X" + "@GRAD");
}
TEST
(
Backward
,
simple_op_not_need_grad
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{
"X"
,
"b"
},
{
"Out"
},
{});
ASSERT_NE
(
fwd
,
nullptr
);
auto
gop
=
f
::
Backward
(
*
fwd
,
{
"X"
});
ASSERT_EQ
(
std
::
find
(
gop
->
outputs_
.
begin
(),
gop
->
outputs_
.
end
(),
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
gop
->
outputs_
.
end
());
auto
no_input_gop
=
f
::
Backward
(
*
fwd
,
{
"X"
,
"b"
});
ASSERT_NE
(
no_input_gop
,
nullptr
);
}
TEST
(
Backward
,
net_fc_backward_normal
)
{
std
::
shared_ptr
<
f
::
OperatorBase
>
fwd
=
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{
"X"
,
"w"
,
"b"
},
{
"mul_result"
,
"add_result"
,
"out"
},
{});
...
...
@@ -217,6 +231,8 @@ TEST(Backward, net_input_of_network_not_need_grad) {
bwd_net
->
outputs_
.
begin
(),
bwd_net
->
outputs_
.
end
());
all_output
.
erase
(
f
::
OperatorBase
::
EMPTY_VAR_NAME
());
LOG
(
INFO
)
<<
bwd_net
->
DebugString
();
LOG
(
INFO
)
<<
bwd_net
->
ops_
.
size
();
for
(
auto
&
out
:
{
"W1"
,
"b1"
,
"hidden0"
,
"W2"
,
"b2"
})
{
ASSERT_NE
(
all_output
.
find
(
out
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()),
all_output
.
end
());
...
...
@@ -230,9 +246,9 @@ TEST(Backward, net_input_of_network_not_need_grad) {
ASSERT_TRUE
(
bwd_net
->
ops_
[
1
]
->
IsNetOp
());
auto
first_fc_grad
=
static_cast
<
f
::
NetOp
*>
(
bwd_net
->
ops_
[
1
].
get
());
ASSERT_EQ
(
3UL
,
first_fc_grad
->
ops_
.
size
());
ASSERT_EQ
(
f
::
OperatorBase
::
EMPTY_VAR_NAME
(),
first_fc_grad
->
ops_
[
2
]
->
Output
(
"A
"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()));
LOG
(
INFO
)
<<
first_fc_grad
->
DebugString
();
ASSERT_EQ
(
f
::
OperatorBase
::
EMPTY_VAR_NAME
(),
first_fc_grad
[
2
].
Output
(
"X
"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()));
}
TEST
(
Backward
,
net_shared_weight
)
{
...
...
@@ -245,13 +261,14 @@ TEST(Backward, net_shared_weight) {
ASSERT_TRUE
(
bwd
->
IsNetOp
());
auto
bwd_net
=
static_cast
<
f
::
NetOp
*>
(
bwd
.
get
());
ASSERT_EQ
(
3UL
,
bwd_net
->
ops_
.
size
());
LOG
(
INFO
)
<<
bwd_net
->
DebugString
();
ASSERT_EQ
(
"add_grad"
,
bwd_net
->
ops_
[
2
]
->
type_
);
}
TEST
(
Backward
,
op_register_grad_not_for_network
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{
"X"
,
"W"
,
"b"
},
{
"mul_result"
,
"add_result"
,
"O
ut"
},
{{
"temporary_index"
,
std
::
vector
<
int
>
{
1
}}});
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{
"X"
,
"W"
,
"b"
},
{
"Out"
,
"tmp_o
ut"
},
{{
"temporary_index"
,
std
::
vector
<
int
>
{
1
}}});
ASSERT_THROW
(
f
::
OpRegistry
::
CreateGradOp
(
*
fwd
),
EnforceNotMet
);
}
...
...
@@ -299,9 +316,11 @@ TEST(Backward, op_part_of_output_are_not_need) {
TEST
(
Backward
,
op_part_of_input_are_not_need
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"mul"
,
{
"a"
,
"b"
},
{
"out"
},
{});
auto
backward
=
f
::
Backward
(
*
fwd
,
{
"a"
});
ASSERT_TRUE
(
!
backward
->
IsNetOp
());
ASSERT_False
(
backward
->
IsNetOp
());
auto
net
=
static_cast
<
f
::
NetOp
*>
(
backward
.
get
());
ASSERT_EQ
(
net
->
ops_
.
size
(),
1UL
);
auto
&
grad_mul
=
*
backward
;
auto
&
grad_mul
=
*
net
->
ops_
[
0
]
;
ASSERT_EQ
(
grad_mul
.
type_
,
"mul_grad"
);
ASSERT_EQ
(
grad_mul
.
inputs_
.
size
(),
2UL
+
1UL
+
1UL
);
ASSERT_EQ
(
grad_mul
.
outputs_
.
size
(),
2UL
);
...
...
@@ -324,11 +343,11 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
{
"mul_out2"
,
"tmp_out2"
,
"out2"
},
{}));
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{
"out2"
,
"w3"
,
"b3"
},
{
"mul_out3"
,
"tmp_out3"
,
"out3"
},
{}));
net
.
CompleteAddOp
();
net
.
CompleteAddOp
(
false
);
auto
backward
=
f
::
Backward
(
net
,
{
"mul_out2"
,
"tmp_out2"
,
"out2"
});
ASSERT_TRUE
(
backward
->
IsNetOp
());
auto
bwd_net
=
static_cast
<
f
::
NetOp
*>
(
backward
.
get
());
ASSERT_EQ
(
bwd_net
->
ops_
.
size
(),
1
UL
);
ASSERT_EQ
(
bwd_net
->
ops_
.
size
(),
3
UL
);
auto
&
grad_fc
=
*
bwd_net
->
ops_
[
0
];
ASSERT_EQ
(
grad_fc
.
type_
,
"fc_grad"
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录