Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0e1f2a68
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0e1f2a68
编写于
8月 11, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
8月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add picodet-npu model (#6622)
* add picodet-npu model * fix modelingf
上级
b4727677
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
142 addition
and
13 deletion
+142
-13
configs/picodet/README.md
configs/picodet/README.md
+8
-0
configs/picodet/picodet_s_416_coco_npu.yml
configs/picodet/picodet_s_416_coco_npu.yml
+106
-0
ppdet/modeling/backbones/lcnet.py
ppdet/modeling/backbones/lcnet.py
+26
-13
ppdet/modeling/heads/pico_head.py
ppdet/modeling/heads/pico_head.py
+2
-0
未找到文件。
configs/picodet/README.md
浏览文件 @
0e1f2a68
...
@@ -6,6 +6,8 @@
...
@@ -6,6 +6,8 @@
## 最新动态
## 最新动态
-
发布PicoDet-NPU模型,支持模型全量化部署。
**(2022.08.10)**
-
发布全新系列PP-PicoDet模型:
**(2022.03.20)**
-
发布全新系列PP-PicoDet模型:
**(2022.03.20)**
-
(1)引入TAL及ETA Head,优化PAN等结构,精度提升2个点以上;
-
(1)引入TAL及ETA Head,优化PAN等结构,精度提升2个点以上;
-
(2)优化CPU端预测速度,同时训练速度提升一倍;
-
(2)优化CPU端预测速度,同时训练速度提升一倍;
...
@@ -45,6 +47,12 @@ PP-PicoDet模型有如下特点:
...
@@ -45,6 +47,12 @@ PP-PicoDet模型有如下特点:
| PicoDet-L | 416
*
416 | 39.4 | 55.7 | 5.80 | 7.10 | 20.7ms | 42.23ms |
[
model
](
https://paddledet.bj.bcebos.com/models/picodet_l_416_coco_lcnet.pdparams
)
|
[
log
](
https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco_lcnet.log
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_416_coco_lcnet.yml
)
|
[
w/ 后处理
](
https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_416_coco_lcnet.tar
)
|
[
w/o 后处理
](
https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_416_coco_lcnet_non_postprocess.tar
)
|
| PicoDet-L | 416
*
416 | 39.4 | 55.7 | 5.80 | 7.10 | 20.7ms | 42.23ms |
[
model
](
https://paddledet.bj.bcebos.com/models/picodet_l_416_coco_lcnet.pdparams
)
|
[
log
](
https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco_lcnet.log
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_416_coco_lcnet.yml
)
|
[
w/ 后处理
](
https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_416_coco_lcnet.tar
)
|
[
w/o 后处理
](
https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_416_coco_lcnet_non_postprocess.tar
)
|
| PicoDet-L | 640
*
640 | 42.6 | 59.2 | 5.80 | 16.81 | 62.5ms | 108.1ms |
[
model
](
https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams
)
|
[
log
](
https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco_lcnet.log
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_640_coco_lcnet.yml
)
|
[
w/ 后处理
](
https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_640_coco_lcnet.tar
)
|
[
w/o 后处理
](
https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_640_coco_lcnet_non_postprocess.tar
)
|
| PicoDet-L | 640
*
640 | 42.6 | 59.2 | 5.80 | 16.81 | 62.5ms | 108.1ms |
[
model
](
https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams
)
|
[
log
](
https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco_lcnet.log
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_640_coco_lcnet.yml
)
|
[
w/ 后处理
](
https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_640_coco_lcnet.tar
)
|
[
w/o 后处理
](
https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_640_coco_lcnet_non_postprocess.tar
)
|
-
特色模型
| 模型 | 输入尺寸 | mAP
<sup>
val
<br>
0.5:0.95 | mAP
<sup>
val
<br>
0.5 | 参数量
<br><sup>
(M) | FLOPS
<br><sup>
(G) | 预测时延
<sup><small>
[
CPU
](
#latency
)
</small><sup><br><sup>
(ms) | 预测时延
<sup><small>
[
Lite
](
#latency
)
</small><sup><br><sup>
(ms) | 权重下载 | 配置文件 |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- |
| PicoDet-S-NPU | 416
*
416 | 30.1 | 44.2 | - | - | - | - |
[
model
](
https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_npu.pdparams
)
|
[
log
](
https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco_npu.log
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_416_coco_npu.yml
)
|
<details
open
>
<details
open
>
<summary><b>
注意事项:
</b></summary>
<summary><b>
注意事项:
</b></summary>
...
...
configs/picodet/picodet_s_416_coco_npu.yml
0 → 100644
浏览文件 @
0e1f2a68
_BASE_
:
[
'
../datasets/coco_detection.yml'
,
'
../runtime.yml'
,
'
_base_/picodet_v2.yml'
,
'
_base_/optimizer_300e.yml'
,
]
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams
weights
:
output/picodet_s_416_coco/best_model
find_unused_parameters
:
True
keep_best_weight
:
True
use_ema
:
True
epoch
:
300
snapshot_epoch
:
10
PicoDet
:
backbone
:
LCNet
neck
:
CSPPAN
head
:
PicoHeadV2
LCNet
:
scale
:
0.75
feature_maps
:
[
3
,
4
,
5
]
act
:
relu6
CSPPAN
:
out_channels
:
96
use_depthwise
:
True
num_csp_blocks
:
1
num_features
:
4
act
:
relu6
PicoHeadV2
:
conv_feat
:
name
:
PicoFeat
feat_in
:
96
feat_out
:
96
num_convs
:
4
num_fpn_stride
:
4
norm_type
:
bn
share_cls_reg
:
True
use_se
:
True
act
:
relu6
feat_in_chan
:
96
act
:
relu6
LearningRate
:
base_lr
:
0.2
schedulers
:
-
!CosineDecay
max_epochs
:
300
min_lr_ratio
:
0.08
last_plateau_epochs
:
30
-
!ExpWarmup
epochs
:
2
worker_num
:
6
eval_height
:
&eval_height
416
eval_width
:
&eval_width
416
eval_size
:
&eval_size
[
*eval_height
,
*eval_width
]
TrainReader
:
sample_transforms
:
-
Decode
:
{}
-
Mosaic
:
prob
:
0.6
input_dim
:
[
640
,
640
]
degrees
:
[
-10
,
10
]
scale
:
[
0.1
,
2.0
]
shear
:
[
-2
,
2
]
translate
:
[
-0.1
,
0.1
]
enable_mixup
:
True
-
AugmentHSV
:
{
is_bgr
:
False
,
hgain
:
5
,
sgain
:
30
,
vgain
:
30
}
-
RandomFlip
:
{
prob
:
0.5
}
batch_transforms
:
-
BatchRandomResize
:
{
target_size
:
[
320
,
352
,
384
,
416
,
448
,
480
,
512
],
random_size
:
True
,
random_interp
:
True
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
mean
:
[
0
,
0
,
0
],
std
:
[
1
,
1
,
1
],
is_scale
:
True
}
-
Permute
:
{}
-
PadGT
:
{}
batch_size
:
40
shuffle
:
true
drop_last
:
true
mosaic_epoch
:
180
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
mean
:
[
0
,
0
,
0
],
std
:
[
1
,
1
,
1
],
is_scale
:
True
}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
8
shuffle
:
false
TestReader
:
inputs_def
:
image_shape
:
[
1
,
3
,
*eval_height
,
*eval_width
]
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
interp
:
2
,
target_size
:
*eval_size
,
keep_ratio
:
False
}
-
NormalizeImage
:
{
mean
:
[
0
,
0
,
0
],
std
:
[
1
,
1
,
1
],
is_scale
:
True
}
-
Permute
:
{}
batch_size
:
1
ppdet/modeling/backbones/lcnet.py
浏览文件 @
0e1f2a68
...
@@ -68,7 +68,8 @@ class ConvBNLayer(nn.Layer):
...
@@ -68,7 +68,8 @@ class ConvBNLayer(nn.Layer):
filter_size
,
filter_size
,
num_filters
,
num_filters
,
stride
,
stride
,
num_groups
=
1
):
num_groups
=
1
,
act
=
'hard_swish'
):
super
().
__init__
()
super
().
__init__
()
self
.
conv
=
Conv2D
(
self
.
conv
=
Conv2D
(
...
@@ -85,12 +86,15 @@ class ConvBNLayer(nn.Layer):
...
@@ -85,12 +86,15 @@ class ConvBNLayer(nn.Layer):
num_filters
,
num_filters
,
weight_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.0
)),
weight_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.0
)),
bias_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.0
)))
bias_attr
=
ParamAttr
(
regularizer
=
L2Decay
(
0.0
)))
self
.
hardswish
=
nn
.
Hardswish
()
if
act
==
'hard_swish'
:
self
.
act
=
nn
.
Hardswish
()
elif
act
==
'relu6'
:
self
.
act
=
nn
.
ReLU6
()
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
conv
(
x
)
x
=
self
.
bn
(
x
)
x
=
self
.
bn
(
x
)
x
=
self
.
hardswish
(
x
)
x
=
self
.
act
(
x
)
return
x
return
x
...
@@ -100,7 +104,8 @@ class DepthwiseSeparable(nn.Layer):
...
@@ -100,7 +104,8 @@ class DepthwiseSeparable(nn.Layer):
num_filters
,
num_filters
,
stride
,
stride
,
dw_size
=
3
,
dw_size
=
3
,
use_se
=
False
):
use_se
=
False
,
act
=
'hard_swish'
):
super
().
__init__
()
super
().
__init__
()
self
.
use_se
=
use_se
self
.
use_se
=
use_se
self
.
dw_conv
=
ConvBNLayer
(
self
.
dw_conv
=
ConvBNLayer
(
...
@@ -108,14 +113,16 @@ class DepthwiseSeparable(nn.Layer):
...
@@ -108,14 +113,16 @@ class DepthwiseSeparable(nn.Layer):
num_filters
=
num_channels
,
num_filters
=
num_channels
,
filter_size
=
dw_size
,
filter_size
=
dw_size
,
stride
=
stride
,
stride
=
stride
,
num_groups
=
num_channels
)
num_groups
=
num_channels
,
act
=
act
)
if
use_se
:
if
use_se
:
self
.
se
=
SEModule
(
num_channels
)
self
.
se
=
SEModule
(
num_channels
)
self
.
pw_conv
=
ConvBNLayer
(
self
.
pw_conv
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_channels
=
num_channels
,
filter_size
=
1
,
filter_size
=
1
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
stride
=
1
)
stride
=
1
,
act
=
act
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
x
=
self
.
dw_conv
(
x
)
x
=
self
.
dw_conv
(
x
)
...
@@ -158,7 +165,7 @@ class SEModule(nn.Layer):
...
@@ -158,7 +165,7 @@ class SEModule(nn.Layer):
@
register
@
register
@
serializable
@
serializable
class
LCNet
(
nn
.
Layer
):
class
LCNet
(
nn
.
Layer
):
def
__init__
(
self
,
scale
=
1.0
,
feature_maps
=
[
3
,
4
,
5
]):
def
__init__
(
self
,
scale
=
1.0
,
feature_maps
=
[
3
,
4
,
5
]
,
act
=
'hard_swish'
):
super
().
__init__
()
super
().
__init__
()
self
.
scale
=
scale
self
.
scale
=
scale
self
.
feature_maps
=
feature_maps
self
.
feature_maps
=
feature_maps
...
@@ -169,7 +176,8 @@ class LCNet(nn.Layer):
...
@@ -169,7 +176,8 @@ class LCNet(nn.Layer):
num_channels
=
3
,
num_channels
=
3
,
filter_size
=
3
,
filter_size
=
3
,
num_filters
=
make_divisible
(
16
*
scale
),
num_filters
=
make_divisible
(
16
*
scale
),
stride
=
2
)
stride
=
2
,
act
=
act
)
self
.
blocks2
=
nn
.
Sequential
(
*
[
self
.
blocks2
=
nn
.
Sequential
(
*
[
DepthwiseSeparable
(
DepthwiseSeparable
(
...
@@ -177,7 +185,8 @@ class LCNet(nn.Layer):
...
@@ -177,7 +185,8 @@ class LCNet(nn.Layer):
num_filters
=
make_divisible
(
out_c
*
scale
),
num_filters
=
make_divisible
(
out_c
*
scale
),
dw_size
=
k
,
dw_size
=
k
,
stride
=
s
,
stride
=
s
,
use_se
=
se
)
use_se
=
se
,
act
=
act
)
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks2"
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks2"
])
])
])
...
@@ -187,7 +196,8 @@ class LCNet(nn.Layer):
...
@@ -187,7 +196,8 @@ class LCNet(nn.Layer):
num_filters
=
make_divisible
(
out_c
*
scale
),
num_filters
=
make_divisible
(
out_c
*
scale
),
dw_size
=
k
,
dw_size
=
k
,
stride
=
s
,
stride
=
s
,
use_se
=
se
)
use_se
=
se
,
act
=
act
)
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks3"
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks3"
])
])
])
...
@@ -200,7 +210,8 @@ class LCNet(nn.Layer):
...
@@ -200,7 +210,8 @@ class LCNet(nn.Layer):
num_filters
=
make_divisible
(
out_c
*
scale
),
num_filters
=
make_divisible
(
out_c
*
scale
),
dw_size
=
k
,
dw_size
=
k
,
stride
=
s
,
stride
=
s
,
use_se
=
se
)
use_se
=
se
,
act
=
act
)
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks4"
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks4"
])
])
])
...
@@ -213,7 +224,8 @@ class LCNet(nn.Layer):
...
@@ -213,7 +224,8 @@ class LCNet(nn.Layer):
num_filters
=
make_divisible
(
out_c
*
scale
),
num_filters
=
make_divisible
(
out_c
*
scale
),
dw_size
=
k
,
dw_size
=
k
,
stride
=
s
,
stride
=
s
,
use_se
=
se
)
use_se
=
se
,
act
=
act
)
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks5"
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks5"
])
])
])
...
@@ -226,7 +238,8 @@ class LCNet(nn.Layer):
...
@@ -226,7 +238,8 @@ class LCNet(nn.Layer):
num_filters
=
make_divisible
(
out_c
*
scale
),
num_filters
=
make_divisible
(
out_c
*
scale
),
dw_size
=
k
,
dw_size
=
k
,
stride
=
s
,
stride
=
s
,
use_se
=
se
)
use_se
=
se
,
act
=
act
)
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks6"
])
for
i
,
(
k
,
in_c
,
out_c
,
s
,
se
)
in
enumerate
(
NET_CONFIG
[
"blocks6"
])
])
])
...
...
ppdet/modeling/heads/pico_head.py
浏览文件 @
0e1f2a68
...
@@ -155,6 +155,8 @@ class PicoFeat(nn.Layer):
...
@@ -155,6 +155,8 @@ class PicoFeat(nn.Layer):
x
=
F
.
leaky_relu
(
x
)
x
=
F
.
leaky_relu
(
x
)
elif
self
.
act
==
"hard_swish"
:
elif
self
.
act
==
"hard_swish"
:
x
=
F
.
hardswish
(
x
)
x
=
F
.
hardswish
(
x
)
elif
self
.
act
==
"relu6"
:
x
=
F
.
relu6
(
x
)
return
x
return
x
def
forward
(
self
,
fpn_feat
,
stage_idx
):
def
forward
(
self
,
fpn_feat
,
stage_idx
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录