提交 0d7047ca 编写于 作者: M minqiyang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into port_pybind11

......@@ -55,7 +55,7 @@ paddle.fluid.Inferencer.__init__ ArgSpec(args=['self', 'infer_func', 'param_path
paddle.fluid.Inferencer.infer ArgSpec(args=['self', 'inputs', 'return_numpy'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True))
paddle.fluid.InferenceTranspiler.__init__
......@@ -159,6 +159,7 @@ paddle.fluid.layers.relu ArgSpec(args=['x'], varargs=None, keywords=None, defaul
paddle.fluid.layers.log ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.flatten ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
......@@ -327,7 +328,7 @@ paddle.fluid.contrib.BeamSearchDecoder.update_array ArgSpec(args=['self', 'array
paddle.fluid.contrib.memory_usage ArgSpec(args=['program', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True))
paddle.fluid.transpiler.InferenceTranspiler.__init__
......
......@@ -14,6 +14,7 @@
#pragma once
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
......@@ -22,27 +23,24 @@ namespace details {
class ExceptionHolder {
public:
void Catch(const platform::EnforceNotMet& exp) {
std::lock_guard<std::mutex> lock(mu_);
exception_.reset(new platform::EnforceNotMet(exp));
type_ = kEnforceNotMet;
}
void Catch(const platform::EOFException& exp) {
std::lock_guard<std::mutex> lock(mu_);
// EOFException will not cover up existing EnforceNotMet.
if (exception_.get() == nullptr) {
exception_.reset(new platform::EOFException(exp));
type_ = kEOF;
void Catch(std::exception_ptr eptr) {
try {
std::rethrow_exception(eptr);
} catch (platform::EOFException exp) {
Catch(exp);
} catch (platform::EnforceNotMet exp) {
Catch(exp);
} catch (...) {
LOG(FATAL) << "Unknown exception caught";
}
}
bool ExceptionCatched() const {
bool IsCaught() const {
std::lock_guard<std::mutex> lock(mu_);
return exception_.get() != nullptr;
}
void Throw() {
void ReThrow() {
std::lock_guard<std::mutex> lock(mu_);
switch (type_) {
case kNone:
......@@ -50,27 +48,41 @@ class ExceptionHolder {
case kEnforceNotMet: {
auto e = *static_cast<platform::EnforceNotMet*>(exception_.get());
throw e;
break;
}
case kEOF: {
auto e = *static_cast<platform::EOFException*>(exception_.get());
throw e;
break;
}
default:
LOG(FATAL) << "Unknown exception.";
}
exception_.reset();
type_ = kNone;
ClearImpl();
}
void Clear() {
std::lock_guard<std::mutex> lock(mu_);
ClearImpl();
}
private:
void ClearImpl() {
exception_.reset();
type_ = kNone;
}
private:
void Catch(const platform::EnforceNotMet& exp) {
std::lock_guard<std::mutex> lock(mu_);
exception_.reset(new platform::EnforceNotMet(exp));
type_ = kEnforceNotMet;
}
void Catch(const platform::EOFException& exp) {
std::lock_guard<std::mutex> lock(mu_);
// EOFException will not cover up existing EnforceNotMet.
if (exception_.get() == nullptr) {
exception_.reset(new platform::EOFException(exp));
type_ = kEOF;
}
}
enum ExceptionType { kNone, kEnforceNotMet, kEOF };
ExceptionType type_{kNone};
......
......@@ -107,11 +107,11 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto cur_ready_vars = ready_vars.PopAll(1, &timeout);
if (timeout) {
if (exception_holder_.ExceptionCatched()) {
if (exception_holder_.IsCaught()) {
for (auto &run_op_future : run_op_futures_) {
run_op_future.wait();
}
exception_holder_.Throw();
exception_holder_.ReThrow();
} else {
continue;
}
......@@ -220,12 +220,8 @@ void ThreadedSSAGraphExecutor::RunOp(
running_ops_--;
ready_var_q->Extend(op->Outputs());
VLOG(10) << op << " " << op->Name() << "Signal posted";
} catch (platform::EOFException ex) {
exception_holder_.Catch(ex);
} catch (platform::EnforceNotMet ex) {
exception_holder_.Catch(ex);
} catch (...) {
LOG(FATAL) << "Unknown exception catched";
exception_holder_.Catch(std::current_exception());
}
};
if (pool_) {
......
......@@ -28,6 +28,38 @@ namespace paddle {
namespace framework {
namespace ir {
/*
* The graph is a Directed Acyclic Single Static Assignment Graph.
*
* In more detail, the following properties must hold:
*
* The graph shouldn't contain cycle. Each node is a black-box to the graph
* so the node itself could be a loop operator.
*
* Each Variable-type node has only one input (thus single static assignment).
*
* The output/input of operator is variable and the output/input of variable
* is operator.
*
* The following data harzards in Program are addressed in the Graph:
*
* Write-After-Read
* a = op1(x)
* x = op2(b)
* A control-dependency connection is created bettwen op1 and op2 such that
* op1->op2, so as to ensure correct order.
*
* Write-After-Write
* x = op1(a)
* x = op2(b)
* A control-dependency connection is created between op1 and op2 such that
* op1->op2, so as to ensure correct order.
*
* Other properties currently hold, but is not enforced yet:
*
* Variable-type node (not control dep) with the same variable name share
* the same underlying VarDesc.
*/
class Graph {
public:
explicit Graph(const ProgramDesc &program);
......
......@@ -36,7 +36,7 @@ class SumOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "").AsDuplicable();
AddOutput("Out", "");
AddOutput("Out", "").AsDuplicable();
AddComment("");
}
};
......@@ -59,11 +59,27 @@ class SumOpVarTypeInference : public VarTypeInference {
block->Var(out_var_name)->SetType(default_var_type);
}
};
class DummyOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "").AsDuplicable();
AddOutput("Out", "").AsDuplicable();
AddComment("");
}
};
class DummyOpVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc &op_desc, BlockDesc *block) const override {}
};
} // namespace framework
} // namespace paddle
REGISTER_OPERATOR(sum, paddle::framework::NOP, paddle::framework::SumOpMaker,
paddle::framework::SumOpVarTypeInference);
REGISTER_OPERATOR(dummy, paddle::framework::NOP, paddle::framework::SumOpMaker,
paddle::framework::SumOpVarTypeInference);
REGISTER_OPERATOR(sum_without_infer_var_type, paddle::framework::NOP,
paddle::framework::SumOpMaker);
......@@ -110,5 +126,83 @@ TEST(GraphTest, Basic) {
}
ASSERT_EQ(nodes.size(), 5);
}
TEST(GraphTest, WriteAfterRead) {
// void Test() {
ProgramDesc prog;
auto *op = prog.MutableBlock(0)->AppendOp();
op->SetType("sum");
op->SetInput("X", {"a"});
op->SetOutput("Out", {"b"});
op->SetAttr("op_role", 1);
op = prog.MutableBlock(0)->AppendOp();
op->SetType("dummy");
op->SetInput("X", {"c"});
op->SetOutput("Out", {"a"});
op->SetAttr("op_role", 1);
prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);
std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
ir::Node *control_dep1 = nullptr;
ir::Node *control_dep2 = nullptr;
for (ir::Node *n : g->Nodes()) {
if (n->Name() == "sum") {
ASSERT_EQ(n->outputs[0]->Name(), "b");
ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
control_dep1 = n->outputs[1];
ASSERT_EQ(n->outputs.size(), 2);
}
if (n->Name() == "dummy") {
ASSERT_EQ(n->inputs[0]->Name(), "c");
ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
control_dep2 = n->inputs[1];
ASSERT_EQ(n->inputs.size(), 2);
}
}
ASSERT_EQ(control_dep1, control_dep2);
}
TEST(GraphTest, WriteAfterWrite) {
// void Test() {
ProgramDesc prog;
auto *op = prog.MutableBlock(0)->AppendOp();
op->SetType("sum");
op->SetInput("X", {"a"});
op->SetOutput("Out", {"b"});
op->SetAttr("op_role", 1);
op = prog.MutableBlock(0)->AppendOp();
op->SetType("dummy");
op->SetInput("X", {"c"});
op->SetOutput("Out", {"b"});
op->SetAttr("op_role", 1);
prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);
std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
ir::Node *control_dep1 = nullptr;
ir::Node *control_dep2 = nullptr;
for (ir::Node *n : g->Nodes()) {
if (n->Name() == "sum") {
ASSERT_EQ(n->outputs[0]->Name(), "b");
ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
ASSERT_EQ(n->outputs.size(), 2);
control_dep1 = n->outputs[1];
}
if (n->Name() == "dummy") {
ASSERT_EQ(n->inputs[0]->Name(), "c");
ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
control_dep2 = n->inputs[1];
ASSERT_EQ(n->inputs.size(), 2);
ASSERT_EQ(control_dep1, control_dep2);
}
}
}
} // namespace framework
} // namespace paddle
......@@ -112,5 +112,6 @@ Tensor& Tensor::Resize(const DDim& dims) {
const DDim& Tensor::dims() const { return dims_; }
int64_t Tensor::numel() const { return product(dims_); }
} // namespace framework
} // namespace paddle
......@@ -59,6 +59,14 @@ inline T* Tensor::mutable_data(platform::Place place) {
}
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
int rank = src.dims().size();
PADDLE_ENFORCE_GE(
rank, 2,
"'ReshapeToMatrix()' is only used for flatten high rank "
"tensors to matrixs. Can not be used in reshaping vectors.");
if (rank == 2) {
return src;
}
Tensor res;
res.ShareDataWith(src);
res.Resize(flatten_to_2d(src.dims(), num_col_dims));
......
......@@ -22,6 +22,9 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_bool(profile, false, "Turn on profiler for fluid");
namespace paddle {
namespace {
......@@ -58,6 +61,15 @@ bool NativePaddlePredictor::Init(
std::shared_ptr<framework::Scope> parent_scope) {
VLOG(3) << "Predictor::init()";
if (FLAGS_profile) {
LOG(WARNING) << "Profiler is actived, might affect the performance";
LOG(INFO) << "You can turn off by set gflags '-profile false'";
auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
: platform::ProfilerState::kCPU;
platform::EnableProfiler(tracking_device);
}
if (config_.use_gpu) {
place_ = paddle::platform::CUDAPlace(config_.device);
} else {
......@@ -102,6 +114,10 @@ bool NativePaddlePredictor::Init(
}
NativePaddlePredictor::~NativePaddlePredictor() {
if (FLAGS_profile) {
platform::DisableProfiler(platform::EventSortingKey::kTotal,
"./profile.log");
}
if (sub_scope_) {
scope_->DeleteScope(sub_scope_);
}
......
......@@ -28,23 +28,26 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputDim("X");
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
"Input(Label)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
"The 1st dimension of Input(X) and Input(Label) should "
"be equal.");
int rank = x_dims.size();
PADDLE_ENFORCE_EQ(rank, label_dims.size(),
"Input(X) and Input(Label) shall have the same rank.");
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(label_dims, 0, rank - 1),
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension.");
if (ctx->Attrs().Get<bool>("soft_label")) {
PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
"If Attr(soft_label) == true, the 2nd dimension of "
PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
"If Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal.");
} else {
PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
"If Attr(softLabel) == false, the 2nd dimension of "
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
"If Attr(softLabel) == false, the last dimension of "
"Input(Label) should be 1.");
}
ctx->SetOutputDim("Y", {x_dims[0], 1});
auto y_dims = x_dims;
y_dims[rank - 1] = 1;
ctx->SetOutputDim("Y", y_dims);
ctx->ShareLoD("X", /*->*/ "Y");
}
......@@ -74,24 +77,28 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputDim("X");
auto label_dims = ctx->GetInputDim("Label");
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
"The 1st dimension of Input(X) and Input(Label) should "
"be equal.");
PADDLE_ENFORCE_EQ(x_dims[0], dy_dims[0],
"The 1st dimension of Input(X) and Input(Y@Grad) should "
"be equal.");
PADDLE_ENFORCE_EQ(dy_dims[1], 1,
"The 2nd dimension of Input(Y@Grad) should be 1.");
int rank = x_dims.size();
PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
"Input(Y@Grad) and Input(X) should have the same rank.");
PADDLE_ENFORCE_EQ(label_dims.size(), rank,
"Input(Label) and Input(X) should have the same rank.");
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(label_dims, 0, rank - 1),
"The Input(X) and Input(Label) should have the same "
"shape except the last dimension.");
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(dy_dims, 0, rank - 1),
"The Input(X) and Input(Y@Grad) should have the same "
"shape except the last dimension.");
PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
"The last dimension of Input(Y@Grad) should be 1.");
if (ctx->Attrs().Get<bool>("soft_label")) {
PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
"When Attr(soft_label) == true, the 2nd dimension of "
PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
"When Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal.");
} else {
PADDLE_ENFORCE_EQ(label_dims[1], 1,
"When Attr(soft_label) == false, the 2nd dimension of "
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
"When Attr(soft_label) == false, the last dimension of "
"Input(Label) should be 1.");
}
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
......@@ -113,18 +120,20 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor, default Tensor<float>), a 2-D tensor with shape [N x D],"
" where N is the batch size and D is the number of classes. "
"This input is a probability computed by the previous operator, "
"which is almost always the result of a softmax operator.");
AddInput("Label",
"(Tensor), the ground truth which is a 2-D tensor. When "
"soft_label is set to false, Label is a Tensor<int64> with shape "
"[N x 1]. When soft_label is set to true, Label is a "
"Tensor<float/double> with shape [N x D].");
"(Tensor, default Tensor<float>), a tensor whose last dimension "
"size is equal to the number of classes. This input is a "
"probability computed by the previous operator, which is almost "
"always the result of a softmax operator.");
AddInput(
"Label",
"(Tensor), the tensor which represents the ground truth. It has the "
"same shape with 'X' except the last dimension. When soft_label is set "
"to false, the last dimension size is 1; when soft_label is set to "
"true, the last dimension size is equal to the number of classes.");
AddOutput("Y",
"(Tensor, default Tensor<float>), a 2-D tensor with shape "
"[N x 1]. The cross entropy loss.");
"(Tensor, default Tensor<float>), a tensor whose shape is same "
"with 'X' except that the last dimension size is 1. It "
"represents the cross entropy loss.");
AddAttr<bool>("soft_label",
"(bool, default false), a flag indicating whether to "
"interpretate the given labels as soft labels.")
......@@ -132,6 +141,12 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC(
CrossEntropy Operator.
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
The matrix's second dimension(row length) is as same as the original last
dimension, and the first dimension(column length) is the product of all other
original dimensions. Then the softmax computation will take palce on each raw
of flattened matrixs.
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
......
......@@ -33,8 +33,13 @@ class CrossEntropyOpKernel : public framework::OpKernel<T> {
auto* y = ctx.Output<Tensor>("Y");
y->mutable_data<T>(ctx.GetPlace());
int rank = x->dims().size();
Tensor x_2d = framework::ReshapeToMatrix(*x, rank - 1);
Tensor labels_2d = framework::ReshapeToMatrix(*labels, rank - 1);
Tensor y_2d = framework::ReshapeToMatrix(*y, rank - 1);
math::CrossEntropyFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), y, x, labels,
ctx.template device_context<DeviceContext>(), &y_2d, &x_2d, &labels_2d,
ctx.Attr<bool>("soft_label"));
}
};
......@@ -98,9 +103,12 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto* label = ctx.Input<Tensor>("Label");
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
int64_t class_num = x->dims()[1];
// Following computation only depends on the last dimension size. So it's
// unnecessary to convert tensors to 2-D views.
int rank = x->dims().size();
int64_t class_num = x->dims()[rank - 1];
if (ctx.Attr<bool>("soft_label")) {
XeSoftlabelGradFunctor<T> functor(dx_data, dy->data<T>(), x->data<T>(),
label->data<T>(),
......
......@@ -38,7 +38,7 @@ class ShapeOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("Input", "(Tensor), The input tensor.");
AddOutput("Out",
"(Tensor), The shape of input tensor, the data type of the shape"
" is int64_t, will be on the same device with the input Tensor.");
" is int32_t, will be on the same device with the input Tensor.");
AddComment(R"DOC(
Shape Operator
......@@ -53,5 +53,5 @@ Get the shape of input tensor. Only support CPU input Tensor now.
namespace ops = paddle::operators;
REGISTER_OPERATOR(shape, ops::ShapeOp, ops::ShapeOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(shape, ops::ShapeKernel<int>, ops::ShapeKernel<int64_t>,
REGISTER_OP_CPU_KERNEL(shape, ops::ShapeKernel<int>, ops::ShapeKernel<int32_t>,
ops::ShapeKernel<float>, ops::ShapeKernel<double>);
......@@ -15,6 +15,6 @@ limitations under the License. */
#include "paddle/fluid/operators/shape_op.h"
REGISTER_OP_CUDA_KERNEL(shape, paddle::operators::ShapeKernel<int>,
paddle::operators::ShapeKernel<int64_t>,
paddle::operators::ShapeKernel<int32_t>,
paddle::operators::ShapeKernel<float>,
paddle::operators::ShapeKernel<double>);
......@@ -27,7 +27,7 @@ class ShapeKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in_t = ctx.Input<Tensor>("Input");
auto* out_t = ctx.Output<Tensor>("Out");
auto out_data = out_t->mutable_data<int64_t>(platform::CPUPlace());
auto out_data = out_t->mutable_data<int32_t>(platform::CPUPlace());
auto in_dims = in_t->dims();
for (int i = 0; i < in_dims.size(); ++i) {
out_data[i] = in_dims[i];
......
......@@ -31,16 +31,12 @@ class SoftmaxKernel : public framework::OpKernel<T> {
// allocate memory on device.
Out->mutable_data<T>(context.GetPlace());
auto dims = X->dims();
auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);
framework::LoDTensor flattened_x;
framework::LoDTensor flattened_out;
flattened_x.ShareDataWith(*X).Resize(flattened_dims);
flattened_out.ShareDataWith(*Out).Resize(flattened_dims);
int rank = X->dims().size();
Tensor X_2d = framework::ReshapeToMatrix(*X, rank - 1);
Tensor Out_2d = framework::ReshapeToMatrix(*Out, rank - 1);
math::SoftmaxFunctor<DeviceContext, T>()(
context.template device_context<DeviceContext>(), &flattened_x,
&flattened_out);
context.template device_context<DeviceContext>(), &X_2d, &Out_2d);
}
};
......@@ -55,18 +51,14 @@ class SoftmaxGradKernel : public framework::OpKernel<T> {
// allocate memory on device.
dX->mutable_data<T>(context.GetPlace());
auto dims = Out->dims();
auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);
framework::LoDTensor flattened_out;
framework::LoDTensor flattened_d_out;
framework::LoDTensor flattened_d_x;
flattened_out.ShareDataWith(*Out).Resize(flattened_dims);
flattened_d_out.ShareDataWith(*dOut).Resize(flattened_dims);
flattened_d_x.ShareDataWith(*dX).Resize(flattened_dims);
int rank = Out->dims().size();
Tensor Out_2d = framework::ReshapeToMatrix(*Out, rank - 1);
Tensor dOut_2d = framework::ReshapeToMatrix(*dOut, rank - 1);
Tensor dX_2d = framework::ReshapeToMatrix(*dX, rank - 1);
math::SoftmaxGradFunctor<DeviceContext, T>()(
context.template device_context<DeviceContext>(), &flattened_out,
&flattened_d_out, &flattened_d_x);
context.template device_context<DeviceContext>(), &Out_2d, &dOut_2d,
&dX_2d);
}
};
......
......@@ -20,9 +20,11 @@ from .layer_function_generator import autodoc, templatedoc
from ..layer_helper import LayerHelper
from . import tensor
from . import nn
from . import ops
from ... import compat as cpt
import math
import six
import numpy
from functools import reduce
__all__ = [
......@@ -266,10 +268,11 @@ def detection_output(loc,
prior_box_var=prior_box_var,
target_box=loc,
code_type='decode_center_size')
old_shape = scores.shape
scores = nn.reshape(x=scores, shape=(-1, old_shape[-1]))
compile_shape = scores.shape
run_shape = ops.shape(scores)
scores = nn.flatten(x=scores, axis=2)
scores = nn.softmax(input=scores)
scores = nn.reshape(x=scores, shape=old_shape)
scores = nn.reshape(x=scores, shape=compile_shape, actual_shape=run_shape)
scores = nn.transpose(scores, perm=[0, 2, 1])
scores.stop_gradient = True
nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)
......@@ -679,9 +682,10 @@ def ssd_loss(location,
raise ValueError("Only support mining_type == max_negative now.")
num, num_prior, num_class = confidence.shape
conf_shape = ops.shape(confidence)
def __reshape_to_2d(var):
return nn.reshape(x=var, shape=[-1, var.shape[-1]])
return nn.flatten(x=var, axis=2)
# 1. Find matched boundding box by prior box.
# 1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
......@@ -692,7 +696,8 @@ def ssd_loss(location,
# 2. Compute confidence for mining hard examples
# 2.1. Get the target label based on matched indices
gt_label = nn.reshape(x=gt_label, shape=gt_label.shape + (1, ))
gt_label = nn.reshape(
x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
gt_label.stop_gradient = True
target_label, _ = target_assign(
gt_label, matched_indices, mismatch_value=background_label)
......@@ -703,9 +708,12 @@ def ssd_loss(location,
target_label = __reshape_to_2d(target_label)
target_label.stop_gradient = True
conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
# 3. Mining hard examples
conf_loss = nn.reshape(x=conf_loss, shape=(num, num_prior))
conf_loss = nn.reshape(
x=conf_loss,
shape=(num, num_prior),
actual_shape=ops.slice(
conf_shape, axes=[0], starts=[0], ends=[2]))
conf_loss.stop_gradient = True
neg_indices = helper.create_tmp_variable(dtype='int32')
dtype = matched_indices.dtype
......@@ -774,7 +782,11 @@ def ssd_loss(location,
# 5.3 Compute overall weighted loss.
loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
# reshape to [N, Np], N is the batch size and Np is the prior box number.
loss = nn.reshape(x=loss, shape=[-1, num_prior])
loss = nn.reshape(
x=loss,
shape=(num, num_prior),
actual_shape=ops.slice(
conf_shape, axes=[0], starts=[0], ends=[2]))
loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
if normalize:
normalizer = nn.reduce_sum(target_loc_weight)
......@@ -1007,13 +1019,7 @@ def multi_box_head(inputs,
"""
def _reshape_with_axis_(input, axis=1):
if not (axis > 0 and axis < len(input.shape)):
raise ValueError("The axis should be smaller than "
"the arity of input and bigger than 0.")
new_shape = [
-1, reduce(lambda x, y: x * y, input.shape[axis:len(input.shape)])
]
out = nn.reshape(x=input, shape=new_shape)
out = nn.flatten(x=input, axis=axis)
return out
def _is_list_or_tuple_(data):
......@@ -1103,11 +1109,13 @@ def multi_box_head(inputs,
stride=stride)
mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
new_shape = [
mbox_loc.shape[0], mbox_loc.shape[1] * mbox_loc.shape[2] *
cpt.floor_division(mbox_loc.shape[3], 4), 4
compile_shape = [
mbox_loc.shape[0], cpt.floor_division(
box_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
]
mbox_loc_flatten = nn.reshape(mbox_loc, shape=new_shape)
run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
mbox_loc_flatten = nn.reshape(
mbox_loc, shape=compile_shape, actual_shape=run_shape)
mbox_locs.append(mbox_loc_flatten)
# get conf
......@@ -1119,11 +1127,16 @@ def multi_box_head(inputs,
padding=pad,
stride=stride)
conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
new_shape = [
conf_loc.shape[0], conf_loc.shape[1] * conf_loc.shape[2] *
cpt.floor_division(conf_loc.shape[3], num_classes), num_classes
new_shape = [0, -1, num_classes]
compile_shape = [
conf_loc.shape[0],
cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
conf_loc.shape[3], num_classes), num_classes
]
conf_loc_flatten = nn.reshape(conf_loc, shape=new_shape)
run_shape = tensor.assign(
numpy.array([0, -1, num_classes]).astype("int32"))
conf_loc_flatten = nn.reshape(
conf_loc, shape=compile_shape, actual_shape=run_shape)
mbox_confs.append(conf_loc_flatten)
if len(box_results) == 1:
......
......@@ -112,6 +112,7 @@ __all__ = [
'log',
'crop',
'rank_loss',
'flatten',
]
......@@ -5361,3 +5362,70 @@ def rank_loss(label, left, right, name=None):
"Right": right},
outputs={'Out': out})
return out
def flatten(x, axis=1, name=None):
"""
**Flatten layer**
Flattens the input tensor into a 2D matrix.
Examples:
Case 1:
Given
X.shape = (3, 100, 100, 4)
and
axis = 2
We get:
Out.shape = (3 * 100, 4 * 100)
Case 2:
Given
X.shape = (3, 100, 100, 4)
and
axis = 0
We get:
Out.shape = (1, 3 * 100 * 100 * 4)
Args:
x (Variable): A tensor of rank >= axis.
axis (int): Indicate up to which input dimensions (exclusive) should
be flattened to the outer dimension of the output.
The value for axis must be in the range [0, R], where R
is the rank of the input tensor. When axis = 0, the shape
of the output tensor is (1, (d_0 X d_1 ... d_n), where the
shape of the input tensor is (d_0, d_1, ... d_n).
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: A 2D tensor with the contents of the input tensor, with input
dimensions up to axis flattened to the outer dimension of
the output and remaining input dimensions flattened into the
inner dimension of the output.
Raises:
ValueError: If x is not a variable.
ValueError: If axis is not in range [0, rank(x)].
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
out = fluid.layers.flatten(x=x, axis=2)
"""
helper = LayerHelper('flatten', **locals())
if not (isinstance(x, Variable)):
raise ValueError("The input x should be a Variable")
if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
raise ValueError("The axis should be a int, and in range [0, rank(x)]")
out = helper.create_tmp_variable(x.dtype)
helper.append_op(
type='flatten',
inputs={"X": x},
outputs={'Out': out},
attrs={"axis": axis})
return out
......@@ -105,5 +105,107 @@ class TestCrossEntropyOp3(OpTest):
["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)
class TestCrossEntropyOp4(OpTest):
"""Test high rank tensor cross-entropy with discrete one-hot labels.
"""
def setUp(self):
self.op_type = "cross_entropy"
shape = [10, 2, 4]
ins_num = np.prod(np.array(shape))
class_num = 10
X_2d = randomize_probability(ins_num, class_num, dtype='float64')
label_2d = np.random.randint(0, class_num, (ins_num, 1), dtype="int64")
cross_entropy_2d = np.asmatrix(
[[-np.log(X_2d[i][label_2d[i][0]])] for i in range(X_2d.shape[0])],
dtype="float64")
X = X_2d.reshape(shape + [class_num])
label = label_2d.reshape(shape + [1])
cross_entropy = np.array(cross_entropy_2d).reshape(shape + [1])
self.inputs = {"X": X, "Label": label}
self.outputs = {"Y": cross_entropy}
self.attrs = {"soft_label": False}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Y", numeric_grad_delta=0.001)
class TestCrossEntropyOp5(OpTest):
"""Test high rank tensor cross-entropy with vectorized soft labels.
"""
def setUp(self):
self.op_type = "cross_entropy"
shape = [4, 3]
ins_num = np.prod(np.array(shape))
class_num = 37
X_2d = randomize_probability(ins_num, class_num)
label_2d = np.random.uniform(0.1, 1.0,
[ins_num, class_num]).astype("float32")
label_2d /= label_2d.sum(axis=1, keepdims=True)
cross_entropy_2d = (-label_2d * np.log(X_2d)).sum(
axis=1, keepdims=True).astype("float32")
X = X_2d.reshape(shape + [class_num])
label = label_2d.reshape(shape + [class_num])
cross_entropy = np.array(cross_entropy_2d).reshape(shape + [1])
self.inputs = {"X": X, "Label": label}
self.outputs = {"Y": cross_entropy}
self.attrs = {"soft_label": True}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)
class TestCrossEntropyOp6(OpTest):
"""Test high rank tensor cross-entropy with vectorized one-hot representation of labels.
"""
def setUp(self):
self.op_type = "cross_entropy"
shape = [4, 3, 2]
ins_num = np.prod(np.array(shape))
class_num = 17
X_2d = randomize_probability(ins_num, class_num)
label_index_2d = np.random.randint(
0, class_num, (ins_num), dtype="int32")
label_2d = np.zeros(X_2d.shape)
label_2d[np.arange(ins_num), label_index_2d] = 1
cross_entropy_2d = np.asmatrix(
[[-np.log(X_2d[i][label_index_2d[i]])]
for i in range(X_2d.shape[0])],
dtype="float32")
X = X_2d.reshape(shape + [class_num])
label = label_2d.reshape(shape + [class_num])
cross_entropy = np.array(cross_entropy_2d).reshape(shape + [1])
self.inputs = {"X": X, "Label": label.astype(np.float32)}
self.outputs = {"Y": cross_entropy}
self.attrs = {"soft_label": True}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)
if __name__ == "__main__":
unittest.main()
......@@ -465,6 +465,17 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(out)
print(str(program))
def test_flatten(self):
program = Program()
with program_guard(program):
x = layers.data(
name='x',
append_batch_size=False,
shape=[4, 4, 3],
dtype="float32")
out = layers.flatten(x, axis=1, name="flatten")
self.assertIsNotNone(out)
def test_shape(self):
program = Program()
with program_guard(program):
......
......@@ -532,7 +532,10 @@ class DistributeTranspiler(object):
pserver_program._sync_with_cpp()
return pserver_program
def get_startup_program(self, endpoint, pserver_program):
def get_startup_program(self,
endpoint,
pserver_program,
startup_program=None):
"""
Get startup program for current parameter server.
Modify operator input variables if there are variables that
......@@ -542,12 +545,17 @@ class DistributeTranspiler(object):
endpoint (str): current pserver endpoint.
pserver_program (Program): call get_pserver_program first and
pass the result here.
startup_program (Program): if pass None, will use
default_startup_program
Returns:
Program: parameter server side startup program.
"""
s_prog = Program()
if not startup_program:
orig_s_prog = default_startup_program()
else:
orig_s_prog = startup_program
s_prog.random_seed = orig_s_prog.random_seed
params = self.param_grad_ep_mapping[endpoint]["params"]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册